THIRTY METER TELESCOPE PLANETARY SYSTEMS IMAGER

DIMITRI MAWET, ON BEHALF OF THE TMT-PSI TEAM

TMT-PLANETARY SYSTEMS IMAGER

Canada: É. Artigau, B. Benneke, R. Doyon, D. Lafrenière, C. Marois, L. Simard

Caltech/JPL: V. Bailey, C. Beichman, R. Dekany, J.-R. Delorme, L. Hillenbrand, A. Howard, N. Jovanovic, H. Knutson, D. Mawet, M. Millar-Blanchaer, L. Roberts, G. Ruane, G. Serabyn, M. Troy, G. Vasisht, J. K. Wallace, J. Wang

China: S. Dong

Hawaii: C. Baranec, M. Chun, M. Liu

Japan: O. Guyon, J. Hashimoto, H. Kawahara, T. Kotani, J. Lozi, N. Murakami, N. Narita, T.-S. Pyo, M. Tamura

India: S. Mondal

UC: T. Brandt, C. Dressing, M. Fitzgerald,¹ J. Fortney, R. Jensen-Clem, Q. Konopacky, J. Lu, B. Mazin,² R. Murray-Clay, A. Shields, A. Skemer, D. Stelter, S. Wright

Other: J. Chilcote, I. Crossfield, R. Dong (soon Canada), R. Frazin, B. Macintosh, J. Males, M. Marley

SCIENCE CASES - EXOPLANETS

- Exoplanet demographics on Solar system scales (0.5 AU to >5AU)
- Exoplanet characterization from Earth-like planets, Super-Earths, Mini-Neptunes, Ice and Gas giants
 - Orbital configuration/dynamics
 - Atmosphere composition, clouds/hazes
 - Energy budget, climate
 - Spin, Weather
 - Moons, rings
- Biosignatures on Habitable Earth-size planets around M/K stars
 - H₂O, O₂, CH₄ trifecta

Pre-Kepler

Post-Kepler

PLANET SIZE (relative to Earth)

Fressin 2013

Small Planets Come in Two Sizes

Fulton et al. 2017

1 in 4 M-type stars has a rocky planet in its Habitable zone

Dressing & Charbonneau 2015

Proxima Centauri b Artist rendition (ESO/M. Kornmesser)

BLIND SEARCH VS TARGETED CAMPAIGN RV, TESS AND GAIA

- Plethora of new RV machines coming online, many now expanding to the near-IR
- TESS Launch imminent (Spring 2018)
- All-sky transit mission
- More exoplanet demographics
- Expected to detect a few super-Earths in 100-day orbits around nearby stars
- Remember single-transits
- GAIA expects to find >>10,000 Jupiters orbiting FGKM and WDs <100 pc, many with orbits (and masses!)
- ~2,600 detections of Jupiter mass planets incl. ~500 accurate orbits (assuming ŋJup~3% from RV)
- Some detectable with ELTs @ 1e-8 contrast
- Astrometric trends from 1-70 MJup companions. BDs detectable with current ExAO

Sozzetti 2015

SCIENCE CASES - PLANET FORMATION

- Planet formation and systems architectures
 - [Fe/H] and C/O ratios vs distance, migration history
 - Disk substructures: rings, gaps, spirals
 - Complementarity to ALMA

OTHER SCIENCES

- <u>Solar system science:</u>
 - Volcanic Eruptions on Io
 - Organics in Comets
 - Asteroid Multiples
 - Planetary Atmospheres
- Galactic Astrophysics:
 - Stellar Multiplicity
 - Stellar Evolution
 - Inner Regions of Circumstellar Disks
 - Ice Lines in Disks
 - Dust streamers in Interacting Binaries
 - Compact Objects
- Extragalactic Astrophysics:
 - Inner Regions of Quasar-Host Galaxies
 - Spatially Resolved Spectra of Nearby Galaxies

HOW-TO: DIRECT REMOTE SENSING

- Fill out parameter space not probed by indirect techniques Direct imaging
- Orbital properties (SMA, e, i) Astrometry
- Bulk properties (Mass, T_{eff} , log g) 🖛 Multi- λ Photometry
- Atmosphere's composition, spin, inhomogeneities Spectroscopy (LRS, HRS)
- Cloud morphology, particle sizes and composition
 Polarimetry
- Planet-disk co-evolution 🖛 Disk imaging (scattering, emission)

Contrast

Habitable Zones within 5 pc (16 ly)

COMPLEMENTARITY WITH JWST

- Major impact in transit spectroscopy of shortperiod planets
- High-contrast imaging of self-luminous planets at larger separations
- Limited low-resolution spectroscopy

COMPLEMENTARITY WITH WFIRST CGI, HABEX/LUVOIR

- Launch >2024
- 0.4-1.0 um, R~70 spectroscopy
- Inner working angle 0.2"
- Discovery and characterization of nearby giant planets, several Neptunes
- Coronagraph may or may not have significant science program
- An opportunity for TMT for Reflected-light spectroscopic follow-ups of Jupiters/ Neptunes at 100-500K Teff.
- Technological synergies
- And HabEx and LUVOIR

FEATURES OF THE PSI CONCEPT

- Ability to address a wide range of science goals
 - Including non-exoplanet science
- Modularity
 - Core capabilities support different science instruments
 - Upgrade paths to accommodate new technology
 - Fiber feeds allow straightforward use of instruments deployed and tested on smaller telescopes
- Relatively compact
 - Diffraction-limited, narrow field-of-view optics
 - Allows for phased development and deployment

TMT-PLANETARY SYSTEMS IMAGER

Science case requires broad wavelength coverage

IMAGING GAS GIANTS, MINI-NEPTUNES AND ROCKY PLANETS

1 I/D IWA coronagraph, SNR=5 in broadband (400nm) @ 800nm Speckle-noise limited with predictive control No chromatic effects (WFS and science at 800nm)

HIGH DISPERSION CORONAGRAPHY AS A TOOL TO DETECT BIOSIGNATURES WITH TMT

W V V

HDC SIMULATIONS FOR GSMTS

HIGH DISPERSION CORONAGRAPHY

Mawet et al. 2017

FIBER INJECTION UNIT FOR THE KECK PLANET IMAGER AND CHARACTERIZER

Design: J. K. Wallace (JPL). I&T: N. Jovanovic (Caltech), J.-R. Delorme (Caltech), D. Echeverri (Caltech).

TECHNOLOGY GAPS - HARDWARE

Items	Requirements	Actors/Partners	Notes					
High-Density Deformable Mirror	120×120 , fast, large stroke (6 μ m), low defective actuator count	BMC, NG, ALPAO, IRIS AO, TNO, Phys Inst, Xinetics, Northrop Gruman	R&D initiated by ALPAO, ESO, BMC, synergies with space, Could be realized with woofer + tweeter setup					
Low-noise detectors	$<1 e^-$ ron, energy resolving, fast (ms), both for optical and IR	E2V (EMCCD), FLI, Nüvü, Leonardo/UH (IR-APD), UCSB/JPL (optical/NIR MKIDs)	Synergies with WFIRST-CGI, HabEx/LUVOIR					
Coronagraph for segmented, obscured apertures	>20%BW, small IWA, high throughput	UoA/Subaru, NASA AMES, Princeton, Caltech, JPL, Leiden, ABC/NAOJ, Hokkaido U	Solutions exist, need lab/on-sky demos					
Low order wavefront sensor (LOWFS)	Fast, out of band, sensitive, sensor fusion	UoA/Subaru, NASA AMES, UCSC, HIA, U of T	Now in operation, telemetry management not unified					
Real Time Controller	Fast, large scale SVD (predictive control)	UoA/Subaru, MicroGate, GreenFlash, JPL, KAUST, Osaka Univ.	Requirements TB refined					
Fibers (single/multi-mode, bundles)	Low-loss, cryogenic, feedthroughs, photonic lanterns, high-density high fill factor bundles	LVF, Corning, Caltech, JPL, fiberguide, ABC/NAOJ, U Tokyo	Synergies with RV and highly multiplexed spectro					
Polarimetric devices	Fast switching high efficiency modulators, achromatic waveplates	Leiden, Caltech/JPL, Subaru	New tech. Available: e.g. polarization gratings					
Dichroics/ADC	High efficiency, large bandwidth, cryogenic	Asahi Spectra	Microstructures promising					

Table 1. Key technologies for TMT PSI — high priority HARDWARE needs. Actors/Partners will expand with our collaboration.

TECHNOLOGY GAPS - SOFTWARE

Items	Requirements	Actors/Partners	Notes				
Extreme AO	$2 \text{ kHz}, 100 \mu \text{s} \text{ lag for } I = 9,$	UoA/Subaru, LLNL, Stanford,	\sim 2 kHz loop frequency,				
	120×120 elements	JPL, NRC	assuming predictive control				
Focal plane WFS/C	Control amplitude speckles NCPAs	IDI /Coltech NDC	Eliminates non-common paths				
	Control amplitude speckles, IVCLAS	JI L/Calleell, INKC	from control				
Predictive AO control	Achieve 100μ s-level temporal lag	LLNL, Victoria, Stanford,	Improves sensitivity, critical				
	on $I = 9$ sources	UoA/Subaru	for M dwarfs				
Sensor fusion	Integrated control algorithms	Princeton, JPL/Caltech,	Improves sensitivity, addresses				
	making use of all sensors/telemetry	UoA/Subaru	WF chromaticity				
Post-processing	Bridge the gap between raw contrast	I AOG Barkalay Caltach	Machine learning techniques				
	and astrophysical contrast, work at	Stanford STScI UCI A NPC	(supervised learning), coheren				
	the photon noise limit	Stanford, STSCI, UCLA, NKC	differential imaging				

Table 2. Key technologies for TMT PSI — high priority SOFTWARE needs. Actors/Partners will expand with our collaboration.

KEY TECHNOLOGIES NEED RAPID MATURATION FROM PAPER CONCEPTS TO SYSTEM INTEGRATION

Paper concept (TRL 1) Lab demo (TRL 3) On-sky demo (TRL 5)

Return on investment for ground-based instruments is more rapid. But we need more investments!

TENTATIVE TIMELINE

	2024 H1 H2	2025 H1 H2	2026 H1 H2	2027 2 H1 H	2028 H2 H1 H	2029 12 H1	H2	2030 H1 H2	2031 H1	2032 H2 H1	20 H2	033 H1 H2	2034 H1	H2	2035 H1	H2	2036 H1
Hardware tech developments																	
DM development																	
120x120 fab complete	1	♦ 2/7															
120x120 lab test complete	1			<u>♦ 2/7</u>		_											
▲ Low-noise detector		-															
Optical (MKIDS, EMCCD)	-	♦ 2/7			_												
NIR (MKIDS, e-APD)	-	♦ 2/7			_												
MIR (MCT)	1			♦ 2/7		_											
Coronagraphs	·																
Segmented coronagraph fab complete	1	♦ 2/7			_												
Segmented coronagraph test complete				<u>♦ 2/7</u>		_											
LOWFS	-			<u> </u>		_											
Special optics developments	·			-		-											
ADC	1			4 2/5													
Polarization	1			4 2/5													
Dichroics	1			4 2/5													
Fibers	1			2/5													
Software tech developments	·																
Extreme AO	1			4 2/7													
Focal plane WFS/C	1			4 2/7													
Predictive AO control	1			4 2/7													
Sensor fusion	1			4 2/7													
Post-processing	1			4 2/7													
TMT first light	1				♦ 5/2	25											
4 PSI red	1	-										٦					
A Phase A	1	+				-h											
PDR	1		2/16														
DDR	1			2/16													
Phase B	1					1											
Pre-Ship review	1									11/4							
I&T at TMT	1																
First light												3/18					
▲ PSI blue	1				r												
	-				†		-			7							
PDR	1				2/15												
DDR	1						- 🔸	12/4									
Phase B	-					₩											
Pre-Ship review	1									11/4							
Deployment of AO telemetric module	1																
▲ I&T at TMT	1																
Telemetric data collection and analysis	1																
First light																•	1/4