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Motivation 

Ø  My Motivation: 
§  To help enhance the detectability of faint exoplanets at small orbital separations from the host 

star  
§  Both ground-based and space-based instruments have not yet achieved the contrast gain 

needed to detect mature planets with masses lower than 1 Jupiter mass at separations 
smaller than 0.5”. 

§  The difficulty arises from the residual glare of starlight at small orbital separations due to 
diffraction, scattered light, and speckles caused by defects in the optical system 

§  New approach à unify source detection and characterization (Position, Flux or Intensity and 
hence accurate spectrum extraction) into one single rigorous mathematical framework, the 
Bayesian framework, enabling an adequate hypothesis testing given the S/N of the data. 

§  The method will be applied in combination with other post-processing techniques (best suited 
for this approach), for example KLIP, but now recast in a Bayesian perspective. 

q  To extend PowellSakes, PwS, a Bayesian approach, to direct imaging data analysis 
–  PwS has successfully been applied to detect compact sources immersed in a diffuse background 

in Planck maps - Carvalho, Rocha & Hobson, MNRAS, 393, 681C, 2009; Carvalho, Rocha, Hobson & Lasenby, 
MNRAS, 427, 2011; Bayesian Methods in Cosmology’ – CUP, December 2009:; Planck catalog (of compact 
sources and SZ clusters) papers 
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Bayesian – what does it really mean? 

q What does it mean to recast the problem of planet detection and characterization into a 
Bayesian perspective? 

 A.  The Bayesian framework entails defining the following key ingredients: 

               a data model       +      a Likelihood shape       +      model parameter priors
      

 

         B.   Next apply Bayes Theorem – to retrieve the probability distribution of the model parameters:        
           Bayes Theorem           Posterior distributions of the model   +   Best Fit models

 

L(d)=P(d|Θ,H)  D(x)=s(x)+n(x) Π(Θ)=P(Θ|H)  

P(Θ|d,H) =P(d|Θ,H) P(Θ|H)/ P(d|H) 

P(Θ|d,H)  eg. Maximum Likelihood  

Inference à Parameter estimation à 
 
Model Selection à Evidence is crucial  E=P(d|H) =  Z 

Expectation of the likelihood over the prior à     
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Bayesian Inference 
basic tools 

q  In contrast to parameter estimation problems à  in model selection the evidence takes the 
central role and is simply the factor required to normalize the posterior: 

 
 

 
 
§  The evidence automatically implements Occam’s razor: 

 A simpler theory with compact parameter space will have a larger evidence than a more 
complicated one, unless the latter is significantly better at explaining the data. 

§  Model selection between two models H0 and H1 can be decided by comparing their respective 
posterior probabilities given the observed data set d: 

 
 

      
 
        Pr(H1)/ Pr(H0) = prior probability ratio for the models 

Evaluation of this multidimensional Integral is a 
challenging numerical task – resort to sampling 
techniques: MCMC, Multinest, (Sivia &Skilling 2006; 
Feroz et al. 2009), etc. or model the posterior as a 
multivariate Gaussian centered at its peak(s) and apply 
the Laplace formula (Hobson, Bridle & Lahav 2002). 
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Bayesian Inference 
Basic tools	  	  

	  
§  Prior on the models: The prior ratio Pr(H1)/ Pr(H0) on the models is often neglected (i.e. assumed to 

equal unity), but plays a very important role in the PwS detection criterion 
 

§  let us imagine we know in advance all the true values of the parameters that define an object, which 
translates into delta-function priors, then we obtain the inequality: 

 
 
§  interpret the term ln( Pr(H0) /Pr(H1) ) as an extra ‘barrier’ added to the detection threshold  

Ø  because we are expecting more fake objects than the objects of interest, due to background 
fluctuations 

§  Assuming Poisson statistics for the number of sources and the number of likelihood maxima 
resulting from the background fluctuations:  

      

λ0 =expected number of maxima per unit area resulting from background fluctuations above the 
minimum limit of detection of the experiment 
λ1 = number density of sources above the same limit - derived from their differential counts 
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Bayesian Inference 
decision theory 

Ø  Probability theory defines only a state of knowledge: the posterior probabilities.  

There is nothing in probability theory per se that determines how to make decisions based 
on these probabilities. 

 

§  To deal with such difficulties, apply decision theory - one must first define the loss/cost 
function L(D, E) for the problem at hand. 

–  D = set of possible decisions; E = set of true values of the variables to infer. 
–  DT can be applied equally well to both parameter estimation and model selection 

•  Loss function -  maps the ‘mistakes’ in our estimations/selections, D, into positive real 
values L(D, E), thereby defining the penalty one incurs when making wrong judgments. 

 
 Bayesian approach to DT à minimize the expected loss with respect to D: 

 
          ‘decisions’ D = parameter estimates Θ^ ; ‘entities’ E = true values  Θ∗ of the parameters 
                          ε ≡ Θ^ - Θ∗ à  ε2, |ε| , unity if ||ε > Δ and zero if |ε| < Δ  
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q  Case I – Detection of point sources in Planck maps ie detection of discrete objects immersed in a 
diffuse background: white noise, correlated noise, anisotropic, non-gaussian emission, destriping 
residuals, etc… 

 

 

 
   

Ø  Extra complications: 
–   The Cosmic Microwave Background, CMB, emission fluctuations varies on a characteristic 

scale of order ∼10 arcmin, similar to that of extragalactic ‘point’ (i.e. beam-shaped) sources or 
the Sunyaev–Zel’dovich (SZ) effect in galaxy clusters, the objects we are interested in

q  Case II: Detection of planets around a star in direct imaging data

 
 

Bayesian Object Detection 
& characterization 

	  
	  

Noise CMB fluctuations 
            + Galactic emission  

Point Sources   
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Frequentist approach 
(common) 

§  Apply a linear filter  Ψ(x) to the original image d(x) and analyse the filtered field: 

 
 

§  the filtering process as ‘optimally boosting’ (in a linear sense) the signal from discrete objects, 
with a given spatial template, and simultaneously suppressing emission from the background. 

§  If the original image contains Nobj objects at positions Xi  with amplitudes Ai : 

 
 
 

§  It is straightforward to design an optimal filter function ψ(x) such that the filtered field (1) has the 
following properties: 

(i)  df (Xk) is an unbiased estimator of Ai ; 
(ii)   the variance of the filtered noise field nf (x) is minimized; 
 

§   the corresponding function ψ(x) is the standard matched filter (eg. Haehnelt & Tegmark 1996). 

signal 
generalised noise 

P(k) = N(k)N(k)where                                         and B(k) is the beam or PSF
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Standard approach 
Matched Filter 
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Bayesian vs frequentist 

Ø  Some points to consider: 

q  The approaches outlined have been shown to produce good results, BUT  
–  The filtering process is only optimal among the rather limited class of linear filters and is 

logically separated from the subsequent object detection step performed on the filtered 
map(s). 

–  The detection threshold is empirically established  - while the threshold is a logical byproduct 
of the framework in the Bayesian approach  (Carvalho, Rocha & Hobson, MNRAS, 393, 
681C, 2009; Carvalho, Rocha, Hobson & Lasenby, MNRAS, 427, 201) 

–  It is well known that MFs are excellent at finding and locating sources, but not as good at 
estimating fluxes 

–  Do not capitalize on previous knowledge both theoretical (modeling) and observational - for 
example using prior information we can enhance the probability of detecting very faint 
sources reliably (see references above) 

 
q  Bayesian approach 

–  Hobson & McLachlan (2003) first introduced this approach, but it was too slow and slower 
than the traditional approaches.  

–  New efficient approach with PowellSnakes - PWS 
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§  Data Model 
Suppose we want to extract the amplitude A of a signal with a known spatial distribution t(x) from a 
measured signal d (x) which is contaminated by noise n(x) à Start by defining your data model: 

 
  

 
          

d(x) = s(x)+ n(x) = At(x)+ n(x)Data Model
Signal

Amplitude of the signal –  what we want to know 

Signal spatial template   - known
Generalized 
Noise

Bayesian Object Detection   
Case	  I:	  DetecEon	  of	  Point	  sources	  in	  Planck	  maps	  -‐	  PWS	  	  	  	  

f=emission coefficients at each frequency
Aj=amplitude, Xj=position, 
aj= shape parameters,  
Φj=emission law parameters
 

Source  
parameters  

B(x)	  =	  Background	  sky	  emission:	  
GalacEc	  emission,	  CMB	  fluctuaEons,	  ..	  

Signal
(Source)

Carvalho, Rocha & Hobson 2009, & Lasenby 2011, Rocha in prep 
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§  Data Model    

          
 
 

Bayesian Object Detection  
Case	  I:	  DetecEon	  of	  Point	  sources	  in	  Planck	  maps	  –	  PWS	  

	  
	  

d(x) = s(x;θ)  +  AY(x) + ninst(x) + F(x) 

	  	  CMB	  fluctuaEons	  	  	  à	  

StaEsEcal	  isotropy	  
RotaEonal	  invariance	  

p(aℓm ) = N(aℓm;0,Cℓ )

•  The CMB fluctuations are a statistically homogeneous  Gaussian random field à The 
correlation matrix is circulante hence diagonal in Fourier or Harmonic space – the spherical 
harmonics or Fourier basis are our PCA basis

N =C + Ninst

Diffuse galactic foregrounds 
              ignored here 

Ninst = ninstninst
T

Carvalho, Rocha & Hobson 2009; & Lasenby 2011, Rocha in prep 

C = 2ℓ+1
4πℓ=2

ℓmas∑ CℓPℓ(α)
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q  The	  systemaEcs	  design	  matrix	  A	  is	  a	  collecEon	  of	  
the	  systemaEcs	  vectors	  {V},	  these	  could	  be:	  

–  The	  principal	  components	  of	  the	  data	  
–  A	  sparse	  decomposiEon	  of	  the	  data	  	  
–  The	  non-‐negaEve	  matrix	  factorizaEon	  

q  A.w	  describes	  the	  systemaEcs	  in	  a	  single	  	  
	  	  	  	  	  data	  frame	  
q  µ(r,	  θ)	  describes	  the	  signal	  

Data model

Bayesian Object Detection  
Case	  II:	  Exoplanets	  in	  direct	  imaging	  data	  (a)	  	  

	  

Speckles planet Noise-instrument 

d(x) = s(x;θ)  +  A.w (x)  + ninst(x)§  Data Model - a

Credit Mike Bottom 
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Inversion 
Data model

Input  
parameters  
     = 
Unknowns 

Star flux Aberrations Object

Star Planet image 

Ygouf et al. 2013, A&A 

Bayesian Object Detection  
Case	  II:	  Exoplanets	  in	  direct	  imaging	  data	  (b)	  	  

Difference: model of the coronographic PSF - from instrument model   

Data

Data Model-b 

MEDUSAE���

•  Start with 
a guess

•  Minimize  
criteria

•  Iterate
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§  Likelihoods   
     The form of the likelihood is determined by the statistical properties of the generalized noise: 

This case Gaussian distributed noise (white + correlated noise) à Multivariate Gaussian Likelihood 

 

Bayesian Object Detection   
Case	  I:	  DetecEon	  of	  Point	  sources	  in	  Planck	  maps	  -‐	  PWS	  	  

Ø  This is equivalent to considering the Likelihood expression: 

§   +  marginalize over A

p(d |Θ,H ) = L(Θ) =
exp −

1
2
d − s(Θ)[ ]T N −1 d − s(Θ)[ ]{ }
(2π )Npix N

p(d |Θ,A,H ) = L(Θ,A) =
exp −

1
2
d − AY − s(Θ)[ ]T Ninst

−1 d − AY − s(Θ)[ ]{ }
(2π )Npix Ninst

N =C + Ninst

C Ninst

Carvalho, Rocha & Hobson 2009; & Lasenby 2011, Rocha in prep 
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Bayesian Object detection 
Case	  I:	  DetecEon	  of	  Point	  sources	  in	  Planck	  maps	  

	  
§  Priors

–  The Jeffreys (Jeffreys 1961) rule for constructing ignorance priors for the one-dimensional case 
read:                                       

Ø                                               

 

 
§  Prior on position: if the sky patches used are sufficiently small, our locally uniform model can easily 

cope with clustering when the gradient of the density of sources is small across the patch 
boundaries. 

 
 

 
Npix is the number of pixels in each patch and Ns is the number of sources in that patch 

Fisher information

where 

Carvalho, Rocha & Hobson 2009; & Lasenby 2011, Rocha in prep 
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 Likelihood manifold 
and Posteriors - PWS 

Position subspace (X,Y) ; High res antenna (A,R) subspace ; (X0,Y0) of a maximum  

§  Bayesian perspective à The filtered field is the projection of the likelihood manifold onto 
the sub-space of position parameters Xj  

§  Ie the Likelihood (after marginalizing over the CMB harmonic coefficients) as function of (X,Y) 

A

R

p(d |Θ,H ) = L(Θ) =
exp −

1
2
d − s(Θ)[ ]T N −1 d − s(Θ)[ ]{ }
(2π )Npix N

2d-contour plots of the posterior distributions 
of the A and R of the source   
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Likelihood 
Case	  II:	  Exoplanets	  in	  direct	  imaging	  data	  (a)	  

 

§  C = Covariance matrix of the residual noise after speckles removal, white noise, normally 
distributed, hence a diagonal matrix 

§  The speckles are described by some combination w of feature vectors A 
§  Marginalize over w,  assuming             

 

Ø  Note: this is exactly the procedure PWS follows for point sources detection and is here applied for 
detection and characterization of Exoplanets  

p(d |Θ,H ) = L(Θ) =
exp −

1
2
d −µ(Θ)[ ]T (C + AΛAT )−1 d −µ(Θ)[ ]{ }

(2π )k C + AΛAT

§  Likelihoods 

Credit Mike Bottom 
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Priors and Posteriors 
Case	  II:	  Exoplanets	  in	  direct	  imaging	  data	  

 
	  Shi[ed-‐scaled	  PSF	  model	  

	  	  	  PriorsUniform	  prior	  on	  posiEon	  	  

Scale-‐invariant	  prior	  on	  amplitude	  

Get	  	  

Credit Mike Bottom

For	  20	  PCAs	  	  

§  Priors, Posteriors 

Inference	  only	  à	  No	  model	  selecEon	  yet	  	  

Probability map 
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Bayesian Object Detection  
Case	  II:	  Exoplanets	  in	  direct	  imaging	  data	  (b)	  

	  
§  Likelihood, priors and posteriors

Priors Likelihood
Currently	  	  
§  Estimates the maximum of the posterior distribution :  

•  Best fit model of the aberration map + planet(s) map 
§  Does not estimate the posterior distribution of the parameters yet 

Apply iterative scheme – start from a guess aberration map and planet(s) map –  
maximize posterior  - replace by new aberration and planet(s) map if J is larger – stop when 
the ‘stop condition’ is achieved 

Posterior

MEDUSAE���

Ygouf et al. 2013, A&A 
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Bayesian Object Detection  How frequentist approach naturally emerges within the Bayesian framework  

v  For model selection: we are interested in the likelihood ratio between the hypothesis Hs that 
objects (of a given source type s) are present and the null hypothesis H0 that there are no such 
objects (= corresponds to setting the sources signal s(x;Θ) to zero): 
 
 
 
 

v   Maximizing the likelihood ratio, with respect to the source amplitudes Aj  à we recover the 
expression for the MMF 

 

 

§  Substituting this maximum-likelihood (ML) estimate onto the Likelihood ratio expression we get 
for the jth object: 
  

v   The traditional approach to catalogue making, in which one compares the maximum SNR of the 
putative detections to some threshold = performing a generalized likelihood ratio test GLRT 

tilde denotes a Fourier transform 
K=2πη mode wavenumber ;  
N(η)= generalized noise cross 
power spectra   

t(X,R) = exp X 2 +Y 2

2R2
!

"
#

$

%
&

SNR (at the peak) of the jth source 
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PWSIII 

q  At the Post-Processing stage there are a number of Image Processing techniques that 
aim at modeling and subtracting the stellar Point Spread Function, PSF, to allow the 
planet to become detectable, in effect increasing the contrast achievable next to a 
bright star: 

Ø  Angular Differential Imaging, ADI, (Marois et al. 2008) 
Ø  LOCI, (Lafreniere et al. 2007);   
Ø  Reference Differential Imaging RDI  
Ø  Principal Component Analysis, PCA, (Amara & Quanz 2012, Meshkat et al. 2014) 
Ø  KLIP (Soummer et al. 2012) which uses the Karhunen-Loeve, KL, transform to model the PSF 
Ø   Stochastic speckle discrimination, SSD, (Gladysz & Christou 2008)  
Ø  Enhanced faint companion photometry and astrometry using wavelength diversity (Burke & 

Devaney 2010) 
Ø  KLIP-FM (Pueyo 2016) 
       etc… 
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PWSIII 

(1)  Construct the Likelihood,. L ((x, y), t, λ, I): 

Ø  Assuming subspaces are independent we can recast it as: 
                                             L ((x, y), t, λ, I)= L ((x, y), I) x L (t) x L (λ) 
  

Ø  Spatial likelihood - Multivariate Gaussian – discussed here 
Ø Connection to to optimal adaptive matched filter (MF) done : current study 

Ø   Temporal Likelihood -  mild Non- Gaussian likelihood specified by the first 3 
moments of the pdf   

 Rocha et al. 2001, 2005

 Gladysz & Christou 2008  
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PWSIII 

Ø Multi-wavelength Likelihood  
Ø Related to  estimating the covariance of the data, estimate the PSF and 

construct a new Multi-Matched filter, MMF, a whitening filter (akin to the 
Hotelling observer, Burke & Devaney 2010) 

Ø  Priors of the model parameters – constructed from external information, previous 
observations, relevant information that helps distinguishing the signal from the noise 

 
(2)  Estimate the posterior distributions of the model parameters  +   the evidence ratios 

of the competing models 

(3)  Potentially iterate previous steps 
 
q  Quantify performance of PWSIII using simulations with injected planets 
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Conclusions 
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q  Case I – Detection of point sources in Planck maps ie detection of discrete objects immersed in a 
diffuse background: white noise, correlated noise, anisotropic, non-gaussian emission, destriping 
residuals, etc… 

 

 

 
   

Ø  Extra complications: 
–   The Cosmic Microwave Background, CMB, emission fluctuations varies on a characteristic 

scale of order ∼10 arcmin, similar to that of extragalactic ‘point’ (i.e. beam-shaped) sources or 
the Sunyaev–Zel’dovich (SZ) effect in galaxy clusters, the objects we are interested in

q  Case II: Detection of planets around a star in direct imaging data

 

Bayesian Object Detection 
& characterization 

	  
	  

Noise CMB fluctuations 
            + Galactic emission  

Point Sources   



28 JPL-MPIA workshop   •  April 2018 Graça Rocha   

Bayesian Inference 
decision theory 

Ø  Probability theory defines only a state of knowledge: the posterior probabilities.  
There is nothing in probability theory per se that determines how to make decisions based 

on these probabilities. 
 

§  To deal with such difficulties, apply decision theory - one must first define the loss/cost 
function L(D, E) for the problem at hand,  

–  where D is the set of possible decisions and E is the set of true values of the entities one 
is attempting to infer. 

–  DT can be applied equally well to both parameter estimation and model selection 

•  Loss function -  maps the ‘mistakes’ in our estimations/selections, D, into positive real 
values L(D, E), thereby defining the penalty one incurs when making wrong judgments. 

 
 The Bayesian approach to DT is simply to minimize, with respect to D, the expected loss: 

          ‘decisions’ D = parameter estimates Θ^ ; ‘entities’ E = true values  Θ∗ of the parameters 
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PWSIII 

(1)  Construct the Likelihood,. L ((x, y), t, λ, I): 

Ø  As the subspace are independent we can recast it as: L ((x, y), t, λ, I)= L ((x, y), I) x L (t) x L (λ);  
Ø  Spatial likelihood - Multivariate Gaussian 
Ø   Temporal Likelihood -  mild Non- Gaussian likelihood specified by the first 3 moments of a PDF 

(Rocha et al. 2001, Rocha et al. 2005)  
Ø  The priors for the model parameters will be constructed based on previous observations and any other 

relevant information that helps distinguishing the signal from the noise 
Ø  Construct an optimal adaptive matched filter (MF): based on the spatial estimation of the noise (using 

KLIP for example) and a spatial model for the planet (e.g. a Airy function) and/or – current study 
Ø   Use multi-wavelength data to estimate the covariance of the data, estimate the PSF and construct a new 

Multi-Matched filter, MMF, a whitening filter (akin to the Hotelling observer), 

(2)  Estimate the posterior distributions of the model parameters  +   the evidence ratios of the 
competing models 

(3)  To improve detection characterization - repeat the previous step -  this time as a temporal analysis 
of the peaks in the previous Likelihood manifold (filtered map in the positional subspace): 
§  (a) Construction of a potentially Non-Gaussian Likelihood based and construction of priors for the 

moments of the distribution, (b) estimating the posterior distributions of these moments and (c) the 
evidence ratios of the competing probability distributions 

q  Quantify performance of PWSIII using simulations with injected planets 
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Bayesian Object detection 
Ingredients:	  Data	  Model,	  Likelihood	  and	  Priors	  

	  
q  Prior on the models: 

–  Only background - the density of maxima, λ0, resulting from the filtering procedure that 
creates the likelihood manifold can be estimated using the 2D Rice formula: 

–  Where: ν=A/σ is the ‘normalized peak amplitude’; k=‘normalized curvature’;  
                  ε=‘normalized shear’ 

                          
 

Marginalizing over all parameters – we obtain the  expected density of maxima of a Gaussian 
filtered field: 

 
 

But we are only interested in the peaks above a certain level ν0 - as PwS pre-selects the putative 
detections by imposing a minimum SNR level before attempting the evidence evaluation - The 
main reason for adopting this early selection is computational efficiency 
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Bayesian Object detection 
Ingredients:	  Data	  Model,	  Likelihood	  and	  Priors	  

	  
q  Prior on the models - considering this flux cut: 

 

  
§  The expected number count of targeted objects above a certain flux threshold S, 
      λ1 ≡ <N(>S)> , may be easily derived from their differential counts. 
§  the expected differential counts for a certain population type of galaxies per flux interval at a 

certain frequency always follow a power law:   
                dNφ/dS = Aφ S-b       (de Zotti et al. 2005) With {AΦ, b}free - provided by 

the user to target a specific type of 
object and/or nstrumental setup  
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Object detection strategy 

q  So far, we have only developed the logic and probabilistic underpinnings of PwS. 
q  It is now time to bring all the pieces together into a consistent strategy for the detection and 

characterization of discrete objects: 
                                                   The single object approach 
      Estimating the posterior odds ratio is a daunting task - find an effective solution, make assumptions: 
     (i) the objects of interest are ‘well separated’; 
      (ii) all variables pertaining to each individual source are mutually independent   
 
     Separate the integrals associated with each source  - deal with each source independently, one at a 
     time - ‘single object approach’ - replaces a single Nparam x Ns - dimensional integral with a sequence  
     of Ns integrals, each of dimension Nparam 

The odds of the model H1 (for a given source type), given Ns such sources, reads: 

Where the ‘partial evidence’ for each individual source: 
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Object detection strategy 

                                                      The single object approach 
Ø  Taking logarithms and rearranging: 

Ø  Where we defined the ‘penalty per source’, Ps: 

Ø  Thus, the total ln (odds) for a single patch is the sum of the partial ln (evidence) for each source, 
plus an extra global penalty term that contributes, in the majority of the cases, negatively to the 
final balance and does not depend on any particular source, but exclusively on the ensemble 
properties 

       

(45)
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Object detection strategy 

One possible procedure to select the optimal set of sources is as follows: 

the ln(odds) for each object plays a pivotal role in catalogue making: 
Ps is the penalty per source 
evaluated at Ns or the catalogue 
penalty per source), 

we have 
only 
selected 
the set of 
detections 
that 
maximizes 
the odds. 
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Object detection strategy 

Ø  Evaluation of the odds ratio 

–  ‘Brute force’ evaluation of the evidence integrals is still not feasible 
–  Use MCMC methods and thermodynamic integration - can fail when the posterior distribution 

is very complex 
–  use ‘Nested Sampling’ (Sivia &Skiling 2006),which is much more efficient, although not 

without its difficulties; MultiNest’ (Feroz et al. 2009) efficient implementation of the nested 
sampling algorithm, which is capable of exploring high-dimensional multi-modal posteriors; 
other simpler nested sampling scheme (Mukherjee, Parkinson & Liddle 2006) perform well. 

Or use another approach (as in PwsI): 

–  PwS I started a Powell minimization chain (hence the name ‘PowellSnakes’) in many 
different locations of the manifold in an attempt to find all the maxima - where the Brent line 
minimizer was ’enhanced’ with an ancillary  step to allow it to ‘tunnel’ from one minimum to 
the next.  

–  Explore the fact that we can separate the position variables from all others- so first locate 
maxima in position space, then  start a four-dimensional PwS optimization at each such 
location to find the ML parameters for that particular peak 
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Object detection strategy 

Ø  Exploring the posterior distribution 

–  Our initial step provides the ML estimates and the SNR of each detection candidates 
–  Only a much smaller sub-set is chosen based on an SNR threshold. 
–  This shorter list is then sorted in descending order of SNR and one-by-one the maxima are 

sent to the nested sampler, 
–  The nested sampler returns an evidence estimate and a set of weighted samples that we use to 

model the full joint posterior distribution 
–  The final catalogue is almost completely independent of the SNR threshold if this is not too 

high 
–  From these samples we can compute any parameter estimate, draw joint distribution surfaces, 

predict HPD intervals of any content over the marginalized distributions to infer the parameter 
uncertainties 
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Catalog making 

q  The last step of PwS is to assemble the final catalogue from a list of candidates 

 
 
Ø  The last step is critical to the success of our methodology 
 

If the selection criterion is based on losses, then we just need to trim the ‘proto-catalogue’ 
further by applying the decision rule - it is much more common in astronomy to require a 
catalogue to have an expected contamination ratio or that the contamination does not exceed a 
prescribed value 

The Bayesian logic framework can give us exactly that -> 
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Catalog making 

Ø  The Bayesian logic framework can give us exactly that: 
–  The number of false positives in a catalogue may be represented as a sum of Bernoulli variables 

§  Assuming all catalogue entries are statistically independent, the sum of N of those variables is 
distributed as a Poisson–binomial distribution: 

 

 
 
§  CLT=> the number of spurious detections in the catalogue is 
§  An estimate of the fraction of spurious detections in the catalogue, 
      α, reads: 

(57)
pi=the probability of source i being a false positive 
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Catalog making 

Finally, we are now in position to answer the key question all the frequentist methods must at some 
point face: 

      ‘what threshold should one use for accepting the candidates for inclusion in the final 
catalogue?’ 
 

The answer is just:  “the ln (odds) estimate of the last line of the final catalogue” 
–  since the initial list of putative detections was sorted in descending order of ln (odds) and all those 

with a higher or equal ln (odds), and only those, were selected for inclusion. 

Ø  Note the question is no longer relevant in our Bayesian approach, since it is an output of our 
catalogue-making method, rather than an input 
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Bayesian Inference 
basic tools 

q  In contrast to parameter estimation problems à  in model selection the evidence takes the 
central role and is simply the factor required to normalize the posterior: 

 
 

 
 
 
 
Ø  The evidence is the expectation of the likelihood over the prior à  is central to Bayesian 

model selection between different hypothesis Hi 

§  The evidence automatically implements Occam’s razor: 
 A simpler theory with compact parameter space will have a larger evidence than a more 

complicated one, unless the latter is significantly better at explaining the data. 
 

      

Evaluation of this multidimensional Integral is a 
challenging numerical task – resort to sampling 
techniques: MCMC, Multinest, (Sivia &Skilling 2006; 
Feroz et al. 2009), etc. or model the posterior as a 
multivariate Gaussian centered at its peak(s) and apply 
the Laplace formula (Hobson, Bridle & Lahav 2002). 
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Bayesian Inference 
basic tools 

 
 

 
The evidence is the expectation of the likelihood over the prior, and hence is central to Bayesian model 

selection between different hypothesis Hi 

q  The question of model selection between two models H0 and H1 can then be decided by 
comparing their respective posterior probabilities given the observed data set d 

 
 
 
 
 
 
 
 
 
 
                                            where Pr(H1)/ Pr(H0) is the a priori probability ratio for the models 
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§  Data Model    

          
 
 

Bayesian Object Detection  
Case	  I:	  DetecEon	  of	  Point	  sources	  in	  Planck	  maps	  –	  PWS	  

	  
	  

d(x) = s(x;θ)  +  AY(x) + ninst(x) + F(x) 

	  	  CMB	  fluctuaEons	  	  	  à	  

StaEsEcal	  isotropy	  
RotaEonal	  invariance	  

p(aℓm ) = N(aℓm;0,Cℓ )

•  The CMB fluctuations are a statistically homogeneous  Gaussian random field à The 
correlation matrix is circulante hence diagonal in Fourier or Harmonic space – the spherical 
harmonics or Fourier basis are our PCA basis

C Ninst
N =C + Ninst

Diffuse galactic foregrounds 
              ignored here 

Ninst = ninstninst
T

Carvalho, Rocha & Hobson 2009; & Lasenby 2011, Rocha in prep 
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Standard approach 
Matched Filter 

§  If we know the noise power spectrum well, we can optimize the filter function by minimizing the 
variance of our estimator. We find that the Fourier transform of the optimal filter function Ψ is given 
by : 

Best signal-to-noise ratio A/σ  attainable 


