Whither Nulling Interferometry?

Gene Serabyn Jet Propulsion Laboratory California Institute of Technology April, 2017 Workshop

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Why Nulling?

- Improve contrast for dust & companions inside the few λ /D coronagraphic IWA - usually not as deep as coronagraphy
- For small stellar leaks, the "null depth" is set by the fringe minimum:

 $N = I_{min}/I_{max} = (1-V)/(1+V)$

= ratio of the destructive & constructive interference signals

• Directly measure a small quantity (N) instead of a small deviation from unity (V)

- for V \approx 1, and defining $\Delta V = 1 - V$, N $\approx \Delta V/2$

How ?

- Antiphase a pair of apertures to center a dark interference fringe on a bright star
- Rotation of array (& fringes) modulates off-axis source signals

Signals from off-axis sources:Green: companion @ $\lambda/2b$ Blue: companion @ $3\lambda/2b$

Bracewell (1978)

Science Goals

- Original goals (Bracewell; TPF-I; Darwin):
 - Terrestial exoplanets in the thermal IR (MIR)
- But
 - High thermal background noise
 - to see faint emission, need to remove two stronger signals:
 - stellar flux & thermal background
 - Ground-based: mainly exozodi levels of nearby stars, protostellar disks
- Shorter wavelengths (NIR):
 - Only need to remove one bright emission source the star
 - But worse phase stability
 - Hot inner exozodi (visibility deficit stars), inner protostellar disks, inner exoplanets

On-sky Nulling Experiments to date

- BLINC/MMT etc. (Univ. of Arizona) -
- Keck Interferometer Nuller (JPL) -
- Palomar Fiber Nuller (JPL) -
- Large Binocular Telescope Int. (UofA) -
- Future: Subaru (integrated optics), VLT/HI5...

	b/D (meters)
MIR	
MIR	85/4
NIR	3.2/1.5
MIR	14/8

HD 100546

Stellar Leakage:

sometimes two apertures are not enough:

Stellar leak or null:

• Stellar null degrades for longer b

IWA = $\lambda/4b$

N = ($\pi^2/256$) (θ_{dia}/IWA)²

Null gets worse for smaller IWA

(wide fringes for deep nulls; narrow fringes for small IWA)

Both $F_v \& N$ are $\propto \theta^2$

For KIN, for a blackbody star of T > 4500K & flux density F_v (Jy):

 $N \simeq 2F_{\nu}/T$

- Nearby A stars (e.g. Vega, Fomalhaut) $\approx 10^{-2}$ to few 10^{-4}
- Nearby G2 star $\approx 10^{-3}$ to few 10^{-5}

➔ calibration with known stellar leakages needed to further reduce star

Thermal-IR Nulling from the Ground

- Need to remove two bright signals:
 - star & background
- Nulling starlight requires fixed null phase
 - \Rightarrow cannot scan null fringe when one is nulling the star
 - \Rightarrow nulling does not remove the background
- Some type of modulation required to remove background:
 - LBTI uses dual chopping secondary mirrors
 - KIN: used phase chopping instead of sky chopping: a 2-stage interferometer with 4 input beams
- Larger number of apertures:
 - Can produce deeper nulls
 - Can also allow modulation to remove backgrounds

Deeper Nulls: Binomial Nulling Array Configurations

Woolf, Angel et al.

- As the number of telescopes grows, the order of the null grows,
 - but, non-identical field amplitudes are required.
- Very expensive with independent spacecraft;
 - but OK as subapertures within large single-aperture telescopes

Single-Baseline Nullers with modulation: Dual chopped nullers

TPF-I:

Dual-chopped Bracewell nuller

- Amplitudes all the same
- Raw nulls not so deep
 - reduce residue by phase chopping between nullers
- Can separate stellar null depth and resolution (IWA)

Circular Nuller Designs (Darwin)

• Fits nicely within a large aperture telescope

Mennesson, Marriotti

General Beamcombiners for 2,3,4 Telescopes

Serabyn et al.

Simpler Beam Combiners

Classical free-space beam combination Fiber acts only as a spatial filter

Combine fields inside fibers or integrated optics The fibers act as spatial filters and combiners (Also act as splitters for power monitoring) (FLUOR: Coude du Foresto 1998)

Combine free space fields via coupling to fiber mode Fiber is both spatial filter & beam combiner (Haguenauer and Serabyn 2006)

Fiber combination adapts easily to combine n beams (Wallner et al. 2004)

Fibers available mostly for shorter wavelengths!

Nulling at shorter (NIR) wavelengths

- Why?
 - Science: Hot dust and inner (hot) exoplanets
- Why not?
 - Phase fluctuations much worse

Hot inner exozodi; Absil et al. (2008)

- How:
 - Much lower background than MIR
 - Phase stability: use ExAO system on a single ap. telescope as cross-ap. fringe tracker
 - Use SM fiber for higher order WF error removal
 - Calibrate null-depths rapidly with spinning wheel (faster than chopping secondary)
 - Most important: Null self-calibration algorithm

A rotating baseline nuller on a single aperture telescope

- Generate one (or more) baselines between sub-apertures on a large telescope
 - Rotate the baseline(s) to modulate the signals from off-axis sources (via K mirror), a la Bracewell
 - Small IWA (< λ /D) provides a very unique coronagraphic IWA

IWA ~ $\lambda/4b = \lambda/4(D-d) \rightarrow \frac{1}{4} \lambda/D$ OWA_{SM} ~ $\lambda/2d \rightarrow D/2d (\lambda/D) \rightarrow 5/3(\lambda/D)$ @ Palomar Operates entirely inside normal coronographic IWA

Coupling and stability behind ExAO

In future, can also potentially move to integrated optics

The Palomar Fiber Nuller (PFN)

Serabyn, Mennesson, Martin, Liewer, Loya, Kuhn, Hanot papers

- K-mirror: baseline rotation
- Pupil mask: two elliptical holes at primary image
- Pupil shear: match beam intensities
- · Split mirror: OPD scans and fine OPD matching
- Chopper wheel: rapid calibration
- Chevron: dispersion correction & pupil compression IR SM fiber combiner

Hale Telescope (5.1m) Cassegrain cage The PFN Location c PFN bencl Nulling fiber (20m long) IR camera on a cart

Rapid calibration: Sequentially measure A-B, A, B, dark

Even behind ExAO, null depth not very stable

- ExAO stabilizes only enough (~100 nm) to stay near fringe minimum
 - allows a larger amount of time to be spent near null
 - Can enable ~ 10^{-4} null depth meas. on very bright stars

Measurement of Null Depth from Statistics of the Null:

The Null Self-Calibration Algorithm

2000

- One-sided null depth fluctuations because N $\propto \phi^2$
 - Invert null depth fluctuations
 - p(N)dn=p(φ)dφ; assume Gaussian fluctuations
 - Can invert analytically in simple cases
 - Use statistics in reality

1.0

0.8

0.6

0.4

0.2

Ω

Null Level

Observed

- Model null distribution to recover astroph. null
- Relaxes stabilization requirements significantly
 - Enables nulling at shorter wavelengths
 - Analogous to dark speckle techniques

10

Time in s

NSC yields > an order of magnitude Improvement in null depth accuracy!

Hanot et al. 2011

∆ø²/4

PFN: Measurements with a 3.5 m baseline

• High accuracy (a few 0.01 % to 0.1%) enables measurements with a very short baseline!

This is what TPF-I/Darwin aimed at doing!

- Hot inner dust: Mini-survey carried out of Absil detections (~ 10 stars): detection limits of N ~ 0.2%
 - Preliminary conclusion is that 2 micron dust is at very small radii (in preparation)
- Bigger telescope & baseline needed to go further

Simplified nulling optics for the future: the grating nuller (achromatic fringes), etc.

No beamsplitters Drop-in optics

<u>Grating nuller:</u> Martin et al. 2017

Phase shift by lateral motion of grating

Null zeroth order with lateral grating shift

Liquid crystal phase shifters:

Constructive fringe

Dark fringe ...Vortex nulling...

Or, Integrated Optics Beam Combiner: e.g., PIONIER

4 input beams (6 baselines) \rightarrow 24 output beams Includes 4 quadrature phases for each baseline (Berger et al., Kern et al. 2011)

Need to show deep suppression

 $\varphi_{12}^{4} = \varphi_{12}^{3} + \pi = \varphi_{12}^{2} + \pi/2$

Nulling Lessons Learned

- Minimize complexity
- Low emissivity extremely important in the MIR
- Background removal (chopping) if possible
- b/D can be very constraining on a single baseline
 - Long baselines (KIN) \rightarrow high stellar leak
 - Short baselines (PFN) \rightarrow can't get close enough to center
 - TPF-I/Darwin solved this (on paper) with multiple baselines; can implement on large telescopes
 - TMT: just right?
- Nulling self-calibration (NSC) has enabled high accuracy nulling in both the NIR & MIR
 - In use at PFN, LBTI, Subaru
 - Dispersed nulling and very rapid readout would help get the most out of NSC
- There is still great potential for high-accuracy NIR nulling/visibility measurements

<u>The future?: Nulling on large single aperture telescopes</u> (Keck, GMT, TMT, ELT)

- NIR nulling on a larger single-aperture telescope could be quite interesting:
 - Simplified nulling optics
 - Integrate nuller into the AO system
 - Good baseline range possible
 - Good stellar rejection possible
 - Multiple baselines easy to implement within a large single-aperture telescope
 - Make use of fibers, integrated optics...
 - Nulling self-calibration (~ dark speckle)
 - Combine nulling with closure phase?
- To enable:
 - Innermost Hot jup spectroscopy & innermost exozodi structure in to a few mas

MIR nulling: KIN/LBTI differences

- Independent telescopes vs. common mount • Configuration: • Baseline: 85 m vs. 14 m
- Modulation: Interferometric phase chopping vs. spatial chopping
- Subapertures:
- Emissivity:
- Spatial filtering:
- Data reduction:

Partial vs. none (inside vs. outside λ/D) Prior to vs. apres nulling self-calibration

4 vs. 2

high vs. low

MIR Nulling Results

- KIN: 47 stars; final best calibrated null ~ 0.2 0.3%; Upper limits a few hundred hundred zodis (Milan-Gabet et al. 2012; Mennesson et al. 2014)
- LBTI: about an order of mag deeper
 - Accuracy improvement due to lower emissivity and use of statistical nulling self-calibration technique

<u>The Future: Simplicity</u> e.g., Crossed Half-Wave Plate Nuller

Time to move to a larger telescope (longer baselines) Need simplified nulling arrangements: need to be efficient! Want drop-in optics for existing coronagraphic benches

Dark fringe