The New Frontier of Exoplanetary Science: High Dispersion Coronagraphy (HDC)

Ji Wang Caltech

Collaborators: Dimitri Mawet, Garreth Ruane, Renyu Hu, Bjorn Benneke

The Ultimate Goal of Exoplanet Spectroscopy - Biomarker Detection

Copy right: ESA

Transmission Spectroscopy

Firefly – Spot Light Analogy

Cloud Obscuration

Sing et al. 2011

High Resolution Spectroscopy Increases Signal

Wyttenbach et al. 2015 HD 189733b See also Khalafinejad et al. 2016

Detection of CO From High-Resolution Spectroscopy

Transmission vs. Emission / Reflection - another way of disentangling cloud effect

Firefly – Spot Light Analogy

Planet Rotation – Beta Pic b

Doppler Imaging (from my simulation code)

Surface Features

Wavelength [um] Line Profile

Doppler Imaging – Luhman 16 A & B

Crossfield et al. 2014

Cloud map of Lunman 16 B

Luhman 16 B (Crossfield et al. 2014)

Clouds Sculpt Emerging Spectra

Skemer et al. (2014)

Adaptive Optics + High Resolution Spectroscopy

- HRS -> 10⁻⁴
- AO -> 10⁻³
- HRS + AO -> 10⁻⁷ (the planet-star contrast of Proxima Cen b)

Snellen et al. 2015

Detection of H₂O and CO on HR 8799 c

HR 8799 c in L band Detection of CH₄

• Spin measurement is consistent with face-on configuration

Wang et al. (2017c) in prep.

LDS + HDS

HD 209485 b, Brogi et al. 2017

Molecular Mapping

Beta Pic b, Hoeijmakers et al. 2018

High Dispersion Coronagraphy bridging the contrast gap

in Star's Glare

Becomes Detectable

High Dispersion Coronagraphy - bridging the contrast gap

Wang et al. 2017 Mawet et al. 2017

Reflection Light of Habitable Planets Ground ELTs vs. Space Missions

HDC Instruments

- SPHERE + CRIRES
- SPHERE + ESPRESSO
- SCExAO + IRD
- MagAO-X + RHEA
- Keck Planet Imager and Characterizer (KPIC)
- TMT Planetary Systems Imager (PSI)
- Space (LUVOIR/HabEx)

NIR HCI+HRS Observation of Prox Cen b with 30-m Class Telescopes

Parameter	Value	Unit
Telescope aperture	10.0 or 30.0	m
Telescope+instrument throughput	10%	
Wavefront correction error floor	200	nm
Spectral resolution	varied	
J band spectral range	1.143 - 1.375	μm
H band spectral range	1.413 - 1.808	μm
K band spectral range	1.996 - 2.382	μm
Exposure time	100	hour
Fiber angular diameter	1.0	λ/D
Readout noise	0.0 or 2.0	e ⁻¹ *
Dark current	0.0 or 0.002	$e^{-1} s^{-1*}$

Note. — *: Based on H2RG detector specification (Blank et al. 2012)

Parameter	Value	Unit	
Star			
Effective temperature ^{**} (T_{eff})	3050	K	
Mass	0.12	M_{\odot}	
Radius	0.14	R_{\odot}	
Surface gravity $(\log g)$	5.0	cgs	
Metallicity ([M/H])	0.0	dex	
Distance	1.295	\mathbf{pc}	
$V \sin i$	<1	$\rm km~s^{-1}$	
Inclination (i)	20	degree	
Radial velocity	-22.4	$\rm km~s^{-1}$	
Planet			
Effective temperature (T _{eff})	234	K	
$V \sin i^{**}$	0.014	$\rm km~s^{-1}$	
Inclination (i)	20	degree	
Semi-major axis (a)	0.05	AU	
Radial velocity	22.2	$\rm km~s^{-1}$	
Illuminated Area	0.5		
Planet/Star Contrast	1.6×10^{-7}		

Note. — *: All values are from Anglada-Escudé et al. (2016). We use 3000 K in simulation. **: We assume that the planet is tidally locked.

HDC Simulation For Proxima Cen b

 H2O and O2 are detectable at 10⁻⁵-10⁻⁶ starlight suppression level (in J band)

 Requirement for starlight suppression is relaxed by 100 times.
 A clear pathway to

A clear pathway to search and characterize planets around M dwarfs

HDC Simulation For a M Dwarf Planet in the HZ at 5 pc

• CO2 can be detected at 4 x 10⁻⁶ starlight suppression level (in *K* band)

 Requirement for starlight suppression is relaxed by 600 times (vs. 6x10⁻⁹ planet/star contrast). A clear pathway to search and characterize planets around M dwarfs

Stellar noise dominates error budget

HDC boost factor: Pixel SNR -> CCF SNR

Ruane, Wang et al. 2018 submitted to ApJ

When comparing results ...

- Make sure all parameters are the same
- HDC boost factor vs. sqrt(N_{lines})
- Planet + star spectrum vs. molecular spectrum only
- Cloud coverage

Cloud effect

High Cloud Average Cloud Low Cloud

Baseline Requirements For HabEx

Telescope/Instru	ment	Star		Planet	
Telescope Aperture	4 m or 12 m	$T_{ m eff}$	5800 K	Contrast	6×10^{-11}
End-to-End Throughput	10%	log(g)	4.5	Planet Radius	$1.0 R_{\oplus}$
Spectral Resolution	varied	$V \sin i$	2.7 km/s	$V \sin i$	0.5 km/s
Exposure Time	varied	Orbital Inclination	50 deg	Orbital Phase	0.25
Wavelength	0.5-1.8 μm	Radial Velocity	0.0 km/s	Radial Velocity	20.4 km/s
Detector Noise	0	Distance	5 pc	Semi-major Axis	1 AU

Stay tuned ...

- Full parameter space study for future space missions (Carl Coker, NPP at JPL)
- Optimal band for molecular search (Carlos Sosa, SURF at Caltech)
- TMT PSI full-fledged simulation (Ji Wang)

Thank you!

Source of Noise

Absorption bands vs. lines

Absorption bands vs. lines

