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The detection of extrasolar planets by direct imaging presents an extraordinary technical
challenge. They must be identified against background light scattered from a star close by and
about a billion times brighter. It has been supposed that a near-perfect space telescope would
be required to avoid atmospheric blurring. But by using adaptive optics operating at fundamen-
tal performance limits, the new generation of large ground-based telescopes has the potential

to detect planets orbiting nearby stars.




Angel (1994)

- Predicted that 6.5 to 12 m ground-based telescopes would be
characterizing planets orbiting nearby main-sequence stars in the

coming decade.
Considered atmospheric speckles, which should average quickly

Did not yet know of the monsters called quasi-static speckles waiting

just off the edge of the map..




e Guyon 2005

- Analyzed the fundamental limits of AO

- Primarily a spatial-PSD analysis, with simplified version of frozen-flow.
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Goal: develop a framework for analyzing the fundamental
limit of ground-based contrast

Closed-loop control analysis

Consider full multi-layer turbulent atmosphere
* Frozen flow, but not limited to this

Predict post-coronagraph contrast
Analyze the temporal behavior of speckles.

With apologies: this requires math . . .




The limit of the planet:star flux ratio that we can detect & characterize
is set by the variance of intensity in the focal plane:

0-752015 = F*At {Ic + Ias —+ Iqs —+ F* [Tas (Igs + 2[IcIa,3 + ICLSI(]S]) + TQS (Iq28 + QICIQS)] }



G:tzot = F*At {Ic —+ IaS -+ Iqs + F* [Tag (Igs + Q[Iclas + IaquS]) + qu (qus T QICIC]S)] }

photons/sec from the star

total integration time

intensity residual from the coronagraph & static aberrations
intensity residual from atmospheric speckles

lifetime of atmospheric speckles

intensity residual from quasi-static speckles

lifetime of quasi-static speckles
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O'Eot — FLAt {Ic + I4s + Iqs + F [Ta,.s ( [Ic*[a.s + I(LSI(]S]) + Tqs (135 + 215[(1“)} }

Photon Noise (Poisson statistics)



0';52015 — F.At {Ic DT Iqs + I [Tas (102,,5 + Q[ICICLS + Iaqus]) + Tgs (qus + QIchs)] }

Speckle Noise



[Tas (I2s + 2[Iclas + LosIys)) + 7gs (138 +2I.1,)] }

Gy — FL At {lle+ Tos + Lgs + F.

Speckle Noise



O-;tzot — F*At {IC -+ Ia,s + Iqs + F* [Tas (102,,3 + 2[IcIa:S + Iaslqs]) T Tgs (Ic?s + QICIC]SH }

Residual

atmospheric
speckles




O'Eot — F*At {I( + Ia,,s + Iqs + F* [Tas (Igs + 2[ICICLS + ICLSI(]S]) + Tqs (I(;ZS + 215[(15)} }

pinned by pinned by
Airy Pattern quasi-static
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O-zgot — F*At {IC + Ias + Iqs + F* [Tas (102,,3 + 2[IcIcw + IaSIqs]) T Tgs (Ic?s + QICIC]S)} }

Coronagraph design is now quite advanced, (thanks WFIRST CGl!)
It is not a wild assumption to ignore it, and that's what I'm going to do from now on.
But: it is common to hear things like:

“well, we’ll only ever achieve 1e-5 AO residual, so that’s all we need from the
coronagraph”

This is wrong. Because of pinning, coronagraph performance ( /. ) must be much better
than AO (1. ).

Note also that /. includes truly static aberrations, or (say) very long lived ones. So this
also has implications for discussion of design and stability of ground-based instruments.
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Understanding the limits of ground-based HCI requires:

1) Predict residual atmospheric speckle contrast ICLS

2) Predict residual atmospheric speckle lifetime Ta,s

3) Predict quasi-static speckle contrast Iqs

4) Predict quasi-static speckle lifetime qu




 AO control as a time-domain control problem is described by the temporal PSD

These are the temporal PSDs, 7..(f)
of individual Fourier modes (or
spatial frequencies) in the
atmosphere.

A m=3,n=3

. e e R Calculations assumed frozen-flow von
equency 7z equency 7z . .

Karman turbulence, with LCO median
conditions.

[rad? /Hz)

Tmn(f) describes the statistics of
the modal amplitudes h,,,

ariance [rad?/Hz|

arlance

Vi

| m=24,n=24

e SRR T The variance of the modal amplitudes
ey T e {|hmn|*) gives the contrast:

Fig 6 Calculated temporal PSDs in a 7-layer turbulence model at 4 different modes, corresponding to discrete spatial

frequencies.

2T 2 - -
(1379 = (7)) () [PFIT = Fon) + PS4 )
Males & Guyon, JATIS, 2018 ? 3) )| ]
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« AO control acts on the input PSD.

 The output of the control system is
described by its transfer functions

T (Flg)— = (F) [ETE (s gl FoE. () [NTIE: (- o) ¢
ETF = error transfer function
NTF = noise transfer function

The residual variance, hence the
contrast, is given by:

fs
(W) (g) = / Tetmn(f; 9)f

Goal: design system with variance
minimizing ETF and NTF




« AO control acts on the input PSD.

 The output of the control system is
described by its transfer functions

%l,mn(f; g) I Tmn(f) |ETFcl(S; g)|2 5B 7;h,mn(f) |NTFCZ(S; g)|2

ETF = error transfer function
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1 Turbulence PSD — NTF = noise transfer function
1 WFS Noise PSD - -

1 SI residual — The residual variance, hence the
1 LP residual — contrast, is given by:

| | Y, fs
1 10 100 (Ponn) (9) = / Tet,mn(f; 9)df
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Frequency [Hz]

Goal: design system with variance
minimizing ETF and NTF
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 The control law calculates the command to apply to the DM
based on the WFS measurements.

- Simple Integrator: h, = h;,_, + gAh;

- General Integrator: T L
h(tz) Z G‘th(ti_j) + gz blAh(tz_l)

J=1 [=0

 Choosing an optimum set of coefficients is the subject of “predictive
control”, which many studies have considered.

- E.g. Dessenne et al. (1998), Poyneer et al. (2007) , Correia et al. (2017)

« We consider a method for determining the coefficients based on the
Linear Prediction (LP) formalism using the input PSD.

- See Males & Guyon (2018) for details . . .
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NSF-MRI funded
ExAO+Coronagraph

2000 actuator BMC MEMS
3.7 kHz Pyramid WFS

Suite of coronagraphs
 VAPP (Leiden)
 PIAACMC

Optimized for Vis-Near-IR

* Young planets at Ha

Integration in progress at UA
- First-light spring 2019
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Scaling MagAO-X to the GMT

szto Mirror Tip Tilt and All pupils are exactly at the green
piston \ planes and have the same path-

length and pitch. After a second
such relay the output pupil will
be identical to the input pupil
(SINE condition obeyed)

X

Central segment light
21,000 Actuators goes through hollow

center

7x 3000 actuator MEMS

OptoMech conceptual design by L. Close
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* Make use of all available information - Sensor Fusion
- Not just WFS

- Accelerometers, FPWFS, etc.

 Empirical Orthogonal Functions (EOF)

- A time-and-space PCA of all available information

- Going back in time On sky proof of concept:

- Guyon et al., in pre
- See Guyon & Males 2017. _ d On-skyF:‘esFl)Jlts

< RAW

Loop running at 2kHz, filter computed every 50sec
54 consecutives 0.5s images (26 sec exposure), 3
mn apart

Same star, same exposure time, same intensity scale
OFF = integrator, gain 20%

conditions: 1.5" seeing, ~35mph wind




Step 2: “Predict residual atmospheric speckle lifetime”
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* Now we’re on step #2

« We'll define the statistical speckle lifetime by

- Rate of increase of variance with time: ;2 _ Jgf
-

&

t/T

- Or, equivalently, improvement in variance of the mean: < |a0|2 >=

» Historical note: this development started with ACESat (Pls Belikov and Bendek), trying
to understand the power of post-processing over very long observations.




Used Zernikes for 2D Kolmogorov PSD

Variance & co-var of amplitudes

Noll (1976) calc. of statistics of a process given PSD

Zernike polynomials and atmospheric turbulence®

Robert J. Noll
The Perkin-Elmer Corporation, Norwalk, Connecticut 06856
(Received 3 October 1975)

This paper discusses some general properties of Zernike polynomials, such as their Fourier transforms, integral
representations, and derivatives. A Zernike representation of the Kolmogoroff spectrum of turbulence is given
that provides a complete analytical description of the number of independent corrections required in a wave-
front compensation system.

J. Opt. Soc. Am., Vol. 66, No. 3, March 1976

Variance of process after correction of N Zernike modes.

TABLE IV. Zernike-Kolmogoroff residual errors (&;). @

is the aperture diameter.)

A=1.0299 (D/7p>/3
2,=0.582 (D/7)*/3

£y=0.134 (D/7)*/3

Ay=0.111 (D/7p)%/3

£5=0.0880 (D/wg)%/3
£g=0,0648 (D/7)%/3
£;=0.0587 (D/rg)%/3
25=0.0525 (D/7,)%/?
Ag=0,0463 (D/7¢)%/3
Ap=0.0401 (D/%)%/3
A4y=0.0377 (D/7y)*/?

Ay~ 0.29445°8/2 (D/7)%/3

A4,=0.0352 (D/7p)¥/3
Ay3=0.0328 (D/#y)¥/?
244=0.0304 (D/7)*/?
A45=0.0279 (D/7/3
Ayg=0.0267 (D/v0)%/3
Ay =0.0255 (D/)%/3
Ag5=0.0243 (D/7)%/3
Agy=0.0232 (D/7)%/?
£49=0.0220 (D/7g)*/?
Agy=0.0208 (D/r)*/?

(For large J)




 We can repeat Noll’s analysis in 1-D with Legendre polynomials.
- EXxpress time-series as expansion in Legendre polynomials
e [ ()
Apply temporal PSD of process governing the time-series.
... bunch of math ...

Derive covariance of coefficients:

X V24 1V20 41 [ Jn+%(27rk)Jn,+%(27rk:) 9
B - /0 - T Tk ke

Which gives variance of coefficient n:

< lan|* >=

2
°oT




We can derive an expression for the correlation length of any
process given its temporal PSD:

T =

k

lim

2
/(;

7

Tk

) ai

T—00 Smaz
2 / d

Males et al, in prep.

Sanity check: if you plug in a white noise PSD, 7 (f) = constant,
you get:

oAt

< lag]* >= =

Note: an alternative way to derive tau is to use the Wiener-Khinchin theorem to get the autocorrelation, and find tau as

the integral of the A.C. (see Fitzgerald & Graham 2006).

numerical PSDs.

In practice, I've found this to be quite hard to implement with




« Getting to speckle intensity from Fourier amplitude

™

A

) (3 + 12) [PSP(F — Foud) + PSF(F + Ry )

ISzZ(

 From the closed-loop control analysis, we have the PSD of h, not h"™2

 Brute force it:

1) generate 2x random correlated time-series of h w/ closed-loop residual
PSD of the Fourier mode amplitude

2) calculate the periodogram: 77, (f) o |F {h}2 + h;ﬁﬂz

3) repeat N times and average
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Spatial Filter
Simple Integrator
Linear Predictor
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— Macintosh et al. (2005) ignored control dynamics (they acknowledged this)
— Concept of “crossing time speckle” is less useful with action of control law on PSDs

— Predictive Control significantly shortens speckle lifetime - faster averaging of noise
(but still well above white noise)




Step 3: “Predict quasi-static speckle contrast”

Step 4: “Predict quasi-static speckle lifetime”

Jared Males — 2018.04.09 AO Limits
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Surface map based on MagAO-X design specs

~1le-4 raw contrast

" PSF Dark Hole Comparisons (center cut)
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Fresnel analysis by J. Lumbres, UofA, for
MagAO-X with vAPP coronagraph (designed by
David Doelman at Leiden).
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Quasi-static speckles with lifetimes of order

1 to 10 minutes commonly reported; e.q.
Hinkley et al (2007), Martinez et al (2012),

Milli et al (2016)



« Aperture Photometry

- Measurement of background
o ' requires referencing a different
_ spatial location — subject to
speckle noise.
0.0 j
.  High Dispersion Coronagraphy
' Snellen+ (2013), Mawet+ (2017), Wang+ (2017)
0.1 00 0.1 - Measurement of continuum

A RA [arcsec] happens in-situ (across very

LkCa 15b at Ho with MagA0+VisAO small Ah) = not subject to
Sallum et al, Nature, 2015 speckle noise
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« Aperture Photometry

Measurement of background
requires referencing a different
spatial location — subject to
speckle noise.

High Dispersion Coronagraphy

Snellen+ (2013), Mawet+ (2017), Wang+ (2017)

Measurement of continuum
happens in-situ (across very
small A\) = not subject to
speckle noise




Wavelength A

Toy model of stellar spectrum
reflected by planet

S/Nupc V/sp [AXN crf JIE CaFalora
S/Nap X A X 1+ CgFE Wity

[1 - Ql]

Comparison of S/N for the HDC vs AP techniques.

If this ratio is > 1 then we should do HDC.
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Let’'s assume nothing works all that well:

- Achieve only 10x the LP contrast
- Residual is long lived speckles (~10 mins)
- 3 AD IWA coronagraph
And assume GMT and TMT
Observe known-from-RV planet hosts
In 25%-ile conditions for LCO and MKO
Science and WFS both @ 800 nm

10% throughput, with noiseless detectors
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GMT Sample (Pessimistic) TMT Sample (Pessimistic)
3)/D, 10x contrast limit, HDC 3\/D, 10x contrast limit, HDC
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« What if we implement a 1 Hz
speckle control loop?

- Analyze it with same tools
we used for atmosphere




On-line control of quasi-static
speckles is not a new idea

How fast can we run?

Example: speckle nulling at
SCExAO

- Martinache et al (2014)

- 30 Hz, using 30 probe frames

0.006 0.024.0.030 0.036 0.042 0.048 0.0!

- So gettingto 1 Hz
On-sky demo of speckle
nulling at ~1 Hz by
Martinache et al (2014)
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 What if we implement a 1 Hz

speckle control loop?

- Analyze it with same tools
we used for atmosphere

- 1gs le-4 - le-9
- Tgs 10 min —» 1 sec

Now AP will be more efficient
than HDC




Let’s assume it all works really well:

- Achieve the LP contrast prediction
- Residual is short lived speckles (10 ms)
- 1 »/D IWA coronagraph

And assume GMT and TMT (same as before)
Observe known-from-RV planet hosts
In 25%-ile conditions for LCO and MKO
Science and WFS both @ 800 nm

10% throughput, with noiseless detectors




GMT Sample (Optimistic) TMT Sample (Optimistic)
1A/ D, 1x contrast limit, AP 1A/ D, 1x contrast limit, AP
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| have not considered Post-Processing in “fundamental” limits:

0 = Fulst {Ie+ Tag + Iy + F [1us (2 + 20lelus + (oolg)) +rrtbit-2cke)} )

P.P. will only remove the long-lived
terms — much better to remove Igs
before taking our images

But, for long-lived speckles that we haven’t controlled, post-processing is
the key to reducing their spatial variance.

We should be able to cast the post-processing step into the temporal
frequency domain as a filter.

- See a first attempt at this in ODI (Males, Belikov, Bendek 2015).

Any ideas on how to do this generally?




* Predictive Control offers great promise

- Much better contrast (>10x on 8t mag star, > 1000x on bright stars)
 See Correia 2017 for a different approach which reaches same conclusion

- Significantly shortens speckle lifetime

- Butit's hard...
» Requires excellent calibration of system
« WFS gain (which we know is variable)
» Subtle details of system transfer functions really matter




 We should be able get the atmosphere out of the way

- GMT raw contrast (@800nm and 25% conditions):
e le-7 on 5th mag star
« le-6 on an 8t mag star

- 5-10 ms speckle lifetimes, will average!

« Comes down to in-instrument quasi-static speckles

« Should we be talking about moving HCIT to LCO & MKO?

- If we can achieve optimum control of the atmosphere we will only be
limited by instrumental aberrations...

- Is that level of raw contrast motivating enough?
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