Where to Look for Dark Matter Weirdness

Dark Matter in Southern California (DaMaSC) - II

J. Bullock, UC Irvine

Collaborators

Mike **Boylan-Kolchin** \rightarrow U. Maryland

Miguel Rocha

Shea Garrison-Kimmel

Oliver **Elbert**

Manoj Kaplinghat

Annika **Peter** → *The* Ohio Sate University

Jose Oñorbe

 $\rightarrow \text{MPIA Heidelberg}$

J. Bullock, UC Irvine

Outline

I. Dwarf Galaxies and the Too Big to Fail Problem

2. Baryon Physics vs. Dark Matter Physics

- SIDM with $\sigma/m \sim (0.5-1) \text{ cm}^2/\text{g}$ can solve the problem
- Feedback probably can't solve it, environment an issue.

3. Baryons + SIDM = Harder than we hoped (but fun)

4. Future directions

J. Bullock, UC Irvine

Smallest Dwarfs: Great DM Laboratories

$$\frac{M_{\star} \sim 10^6 M_{\odot}}{\frac{M_{\rm DM}}{M_{\star}} \sim 50}$$

 $r_{\star} \sim 500 \mathrm{pc}$

Dark Matter Dominated => Easy to interpret Very Few Stars => SN Can't Alter DM

Best-studied dwarfs are satellites of MW

SMC

Simulated MW Halo

Garrison-Kimmel, JSB, Boylan-Kolchin

Bright Satellites of the MW L>10⁵ Lsun

Biggest subhalos = brightest satellites?

Image: Garrison-Kimmel

How do the masses compare?

Image: Garrison-Kimmel

All bright MW dSphs (L>10⁵ L_{sun})

8 biggest subhalos are too dense to host ANY of MW dSph satellites

Boylan-Kolchin, JSB, Kaplinghat 2011,2012

J. Bullock, UC Irvine

Too Big to Fail Problem

8 biggest subhalos are too dense to host ANY of MW dSph satellites

Boylan-Kolchin, JSB, Kaplinghat 2011,2012

J. Bullock, UC Irvine

Summary of the Too Big To Fail problem:

Summary of the Too Big To Fail problem:

What Can Baryons Do?

J. Bullock, UC Irvine

Basic Energy Argument Against SN Feedback

$$M_{\star} \sim 10^6 M_{\odot} \longrightarrow \Delta M_{\rm DM} \sim 5 \times 10^7 M_{\odot}$$

Must remove ~50 times more dark matter than mass in stars!

Energy Required:
$$> 10^{55} \mathrm{ergs}$$

Exceeds every supernovae that has gone off **coupled directly** to the dark matter.

Penarrubia et al. 2012; Garrison-Kimmel et al. 2013

Jose Oñorbe

Oñorbe et al. (in prep)

Minimal change in DM density

Use "P-GADGET" SPH

- Overcomes most standard SPH issues
- Feedback of **Hopkins,** Quartaert, and Murray (2012)

Baryonic Feedback: Not so effective for $M_* < 10^7$

Baryonic Feedback: Not so effective for $M_* < 10^7$

Is there a baryonic solution to Too Big to Fail?

- Tidal forces (extra from disk) and ram-pressure stripping provide additional sources of energy to remove DM

Brooks & Zolotov 2012; Zolotov et al. 2012; Arraki et al. 2012

What's next? Extend these studies to the field (no ram-pressure or tides)

Ferrero, Abadi, Navarro, Sales, & Gurovich 2012

- Examine rotation curves of field dwarfs with $M_{gal}{\sim}10^{6\text{-7}}\ M_{sun}$

- Same problem: not dense enough

- Hard to reconcile with DM halo mass function + observed lum function

Abstract:

.... Resolving this challenge seems to require new insights into dwarf galaxy formation, or perhaps a radical revision of the prevailing paradigm.

Beyond Cold Dark Matter?

Warm Dark Matter:

Self-interacting Dark Matter:

 $m_{\rm dm} \sim {\rm keV}$

Lovell et al. 2011

 $\sigma/m_{\rm dm} \sim 1\,{\rm cm}^2/g$

Vogelsberger et al. 2011, 2012; Rocha et al. 2012; Peter et al. 2012; **Spergel & Steinhardt (2000)**

J. Bullock, UC Irvine

Interesting things happen when $\ \Gamma \sim H_0$

Rocha et al. 2012

Identical large-scale structure

SIDM: Rounder, lower-density cores. (substructure counts minimally affected)

 $\Lambda + SIDM$ $\sigma/m = 1 \text{ cm}^2/\text{g}$

SIDM Makes Cored Halos

SIDM Makes Cored Halos

Fully cosmological zoom of isolated dwarf halo: V_{max}~35km/s

SIDM with o/m=(0.5-1)cm²/g Solves Too Big To Fail Problem

Galaxy Clusters as a Probe of SIDM ?

J. Bullock, UC Irvine

Cosmological Sim of a Galaxy Cluster: 10¹⁵ M_{sun}

Wednesday, September 25, 13

Cosmological Sim of a Galaxy Cluster: 10¹⁵ M_{sun}

Wednesday, September 25, 13

What Do Baryons Do?

J. Bullock, UC Irvine

SIDM vs. CDM (no baryonic component)

SIDM vs. CDM (no baryonic component)

Elbert et al., in preparation

J. Bullock, UC Irvine

SIDM vs. CDM (no baryonic component)

Simulating Baryonic Contraction

e.g. Blumenthal et al. 1986

Simulating Baryonic Contraction

e.g. Blumenthal et al. 1986

Baryons + SIDM

Wednesday, September 25, 13

Baryons + SIDM

Baryons make SIDM predictions complicated

SIDM + Baryons = Hard (~CDM + Baryons)

Elbert et al., in preparation

J. Bullock, UC Irvine

SIDM + Baryons = Hard (~CDM + Baryons)

Size of SDM core will relate to baryonic distribution

Elbert et al., in preparation

J. Bullock, UC Irvine

Smallest Dwarfs: Great DM Laboratories

$$\frac{M_{\star} \sim 10^6 M_{\odot}}{\frac{M_{\rm DM}}{M_{\star}} \sim 50}$$

 $r_{\star} \sim 500 \mathrm{pc}$

Dark Matter Dominated => Easy to interpret Very Few Stars => SN Can't Alter DM

The Local Volume is the Next Frontier

Observation

Theory

Masses of LG dwarfs Evan Kirby et al., in prep

Simulating Local Groups... Garrison-Kimmel et al., in prep

[Exploring the Local Volume In Simulations] Garrison-Kimmel, Boylan-Kolchin, JSB

Take-Aways

I. The Too Big to Fail Problem

Satellites of MW have lower dark matter densities than expected.

- Where are the most massive/dense subhalos?

2. Possible solutions

- SN Feedback? Not enough stars to do it.
- Any Baryonic process? Could be environmental
 - test w/ obs of isolated dwarfs
- Dark Matter physics?
 - SIDM with $\sigma/m \sim 0.5-1 \text{ cm}^2/g$ can do it.

3. Where to look for DM weirdness?

Baryon-dominated systems are interesting in SIDM but HARD Dark matter dominated dSph's in the "Local Field" may be the best bet.

J. Bullock, UC Irvine

The Local Volume Looks Problematic too

Massive Galaxy Cluster: 10¹⁵ M_{sun}

Wednesday, September 25, 13

Dark Matter Phenomenology: Substructure

WDM:

- Solves Too Big To Fail by removing offending subhalos all together.

Problem:

WDM

- For models that solve the TBTF: not enough subhalos to explain known satellite count

- Same models also struggle to explain Ly-alpha forest clumping

