WIMP Dark Matter + SUSY

Clifford Cheung

Dark Matter in Southern California

Ingredients for a miracle (WIMP):

#1) Particle is neutral + stable.

#2) Particle couples to SM with weak scale annihilation cross-section.

These are ubiquitous in models that address the hierarchy problem.

#I) Lots of examples of stabilizing symmetry!

theory	Z_2	
Supersymmetry	R-parity	
Extra Dimensions	KK-parity	
Little Higgs	T-parity	

Parities help with other exp'l constraints.

#2) Lots of weak scale masses + couplings!

Such couplings are mandatory to solve the hierarchy problem. SUSY offers a "sandbox" for WIMP DM.

DM is among primary virtues of SUSY:

dark matter

hierarchy problem

gauge coupling unification

SUSY offers a "sandbox" for WIMP DM.

DM is among primary virtues of SUSY:

dark matter

hierarchy problem ?

gauge coupling unification

DM probes offer a crucial experimental referendum on our motivations for SUSY.

What is the present status of neutralino DM and what is in its future?

Focus on neutralino DM that is an admixture of gauginos and Higgsinos:

$$\chi \sim (\tilde{b}, \tilde{w}, \tilde{h})$$

The parameter space is small, manageable:

$$(M_1, M_2, \mu, \tan \beta)$$

Focus on neutralino DM that is an admixture of gauginos and Higgsinos:

$$\chi \sim (\tilde{b}, \tilde{w}, \tilde{h}) \rightarrow \text{triplets,}$$
 doublets

The parameter space is small, manageable:

$$(M_1, M_2, \mu, \tan \beta)$$

simplifications

- a) Ignore all scalars but light Higgs.
 - resonant effects (Higgs funnels)
 - scalar coannihilation (squark, etc)
- b) Ignore all CP phases.

relic abundance

We allow for a range cosmology scenarios:

• thermal
$$\Omega_{\rm obs} = \Omega_{\chi} = \Omega_{\chi}^{\rm (th)}$$

• non-thermal
$$\Omega_{\rm obs} = \Omega_\chi \neq \Omega_\chi^{\rm (th)}$$

• sub-component $\Omega_{\rm obs} > \Omega_{\chi} = \Omega_{\chi}^{\rm (th)}$

relic abundance

We allow for a range cosmology scenarios:

• thermal
$$\Omega_{\rm obs}=\Omega_\chi=\Omega_\chi^{\rm (th)}$$
 by theory parameters constrained

• non-thermal
$$\Omega_{\rm obs} = \Omega_\chi \neq \Omega_\chi^{\rm (th)}$$

• sub-component $\Omega_{\rm obs} > \Omega_{\chi} = \Omega_{\chi}^{\rm (th)}$

relic abundance

We allow for a range cosmology scenarios:

• thermal
$$\Omega_{\rm obs}=\Omega_\chi=\Omega_\chi^{\rm (th)}$$
 by theory parameters constrained

• non-thermal
$$\Omega_{\rm obs} = \Omega_\chi \neq \Omega_\chi^{\rm (th)}$$

• sub-component
$$\Omega_{\rm obs} > \Omega_{\chi} = \Omega_{\chi}^{\rm (th)}$$
 exp. limits weaker

"Well-tempering" is needed for correct relic abundance in many theories - including SUSY.

experiments

Consider present limits and future reach for direct detection / neutrinos experiments.

- spin independent (SI) scattering: XENON, LUX
- spin dependent (SD) scattering: XENON, IceCube

At zeroth order, XENON100 introduces tension for neutralino dark matter:

$$c_{h\chi\chi} \lesssim 0.1$$
 versus $g' \sim 0.35$ $g \sim 0.65$

At zeroth order, XENON100 introduces tension for neutralino dark matter:

$$c_{h\chi\chi} \lesssim 0.1$$
 versus $g' \sim 0.35$ $g \sim 0.65$

Because contributions are of order the limit, cancellations will occur generically, e.g.

$$(2-1)^2 \ll (2+1)^2$$

how does DM hide?

purity

$$c_{h\chi\chi} \to 0$$

as $M_1, M_2, \mu \to \infty$

blind spots

$$c_{h\chi\chi} = 0$$

as $M_1, M_2, \mu = \text{finite}$

purity

state	SI(h)	SI(Z)	SD(Z)
$ ilde{b}$	inert	inert	inert
$ ilde{w}$	no renorm. operator	no renorm. operator	no renorm. operator
$ ilde{h}_u, ilde{h}_d$	no renorm. operator	present but inelastic	no renorm. operator

blind spots (SI)

Reinstate the Higgs boson:

$$\mathcal{L}_{h\chi\chi} = \frac{1}{2} m_{\chi}(v+h) \chi \chi$$

$$= \frac{1}{2} m_{\chi}(v) \chi \chi + \frac{1}{2} \frac{\partial m_{\chi}(v)}{\partial v} h \chi \chi + \mathcal{O}(h^{2}),$$

Higgs coupling cancellation at:

$$c_{h\chi\chi} = \frac{\partial m_{\chi}(v)}{\partial v} = 0$$

Take bino-Higgsino DM $(M_2 \to \infty)$.

$$\tan \beta = 2$$

$$\tan \beta = 2$$

well-tempered neutralino allowed

well-tempered neutralino excluded

$$\tan \beta = 20$$

$$\tan \beta = 2$$

$$\tan \beta = 2$$

blind spot

$$\tan \beta = 2$$

$$\tan \beta = 20$$

well-tempered neutralino is alive and well

soon, nothing left but blind spot

Are there any theory motivated blind spots?

Higgsino DM at tan beta ~ I hard to probe.

- SI scattering is in blind spot.
- SD scattering is in blind spot.

Higgsino DM at tan beta ~ I is motivated.

- natural theories (lambda SUSY)
- unnatural theories (split SUSY)

Low tan beta preferred by theory (gaugino/scalar hierarchy) and experiment (flavor).

Arvanitaki et al. [1210.0555]

Low tan beta preferred by theory (gaugino/scalar hierarchy) and experiment (flavor).

Arvanitaki et al. [1210.0555]

XENON100 has just cut into the Higgs scattering region of thermal neutralino DM!

thanks!