

Astroparticle Anomalies Current Hints of Possible Dark Matter Signals

Sheldon Campbell University of California, Irvine

What is this talk really about?

• Isn't discussion of low-significance anomalies just

ambulance chasing?

I hope to convince you otherwise.

- 1. Anomalies first emerge at regions of highest sensitivity.
 - Galactic center?

- 1. Anomalies first emerge at regions of highest sensitivity.
 - Galactic center?
- 2. Initial hints motivate models which then predict where else to expect signals.
 - WIMP paradigm expects a signal to emerge in dwarf satellites.

- 1. Anomalies first emerge at regions of highest sensitivity.
 - Galactic center?
- 2. Initial hints motivate models which then predict where else to expect signals.
 - WIMP paradigm expects a signal to emerge in dwarf satellites.
- 3. Spurious anomalies lose significance with time and disappear.

- 1. Anomalies first emerge at regions of highest sensitivity.
 - Galactic center?
- 2. Initial hints motivate models which then predict where else to expect signals.
 - WIMP paradigm expects a signal to emerge in dwarf satellites.
- 3. Spurious anomalies lose significance with time and disappear.
- 4. Signal anomalies gain in significance, and correlated signals begin emerging (randomly) in the next-most-sensitive regions.

- 1. Anomalies first emerge at regions of highest sensitivity.
 - Galactic center?
- 2. Initial hints motivate models which then predict where else to expect signals.
 - WIMP paradigm expects a signal to emerge in dwarf satellites.
- 3. Spurious anomalies lose significance with time and disappear.
- 4. Signal anomalies gain in significance, and correlated signals begin emerging (randomly) in the next-most-sensitive regions.
 - Which regions are next-most-sensitive depends on the scenario.
 It could be:
 - dwarf satellites for annihilating cold dark matter
 - Andromeda for very cold annihilating dark matter
 - inner halo for warm annihilating dark matter
 - outer halo for decaying dark matter

1. Anomalies first emerge at regions of highest sensitivity.

The point is:

Paying attention to weak emerging anomalies can inform about their relation and provide clues about the underlying theory which can then predict the next signals that will appear.

- Which regions are next-most-sensitive depends on the scenario.
 It could be:
 - dwarf satellites for annihilating cold dark matter
 - Andromeda for very cold annihilating dark matter
 - inner halo for warm annihilating dark matter
 - outer halo for decaying dark matter

Direct Detection of Astro Particle DM

Nostalgia of anomalies from just a few years ago.

Direct Detection of Astro Particle DM

Nostalgia of anomalies from just a few years ago.

Only the DAMA annual modulation continues to grow in significance.

Direct Detection of Astro Particle DM

New Nal crystal experiments are coming on line to probe the source of the DAMA anomaly:

- 1. ANAIS-112
- 2. SABRE
 - 2 detectors north & south hemispheres
 - 1 in Gran Sasso near DAMA
 - 1 in Australia

3. COSINUS

• New technique using Nal as a cryogenic calorimeter capable of particle-by-particle discrimination.

Anomalies in Astrophysical Radiation

We have some things to discuss....

Anomalies in Astrophysical Radiation

We have some things to discuss....

The 3.5 keV X-ray line remains an interesting anomaly for dark matter enthusiasts to watch.

Since Kev Abazajian already discussed it in detail in the previous talk, I will not discuss it further.

GeV Galactic Center Excess (GCE)

1-1.6 GeV

Recent new analyses by the

E² dN/dE [MeV cm⁻²s⁻¹]

Evidence for Pulsar Origin of GCE

Lee+, JCAP 1505, 056 (2015) & PRL 116, 051103 (2016)

- With current foreground models, 1. the distribution of the excess behaves more like unresolved point sources than a diffuse dark matter profile.
- Many new pulsar candidates are 2. emerging in the region.
- The excess may be correlated 3. with the X-shaped bulge.
 - suggests stellar population origin --> pulsars.
 - dissipative dark matter could also do this, but no dark disks in Gaia data.

-0.5

-0.6

-0

Galactic Longitude

-0.8 |- -200

-150 -100 No Dark Disk

Height above Galactic Plane [pc]

 $\Sigma = 10 M_{\odot}/pc^{2}$, h=10 pc

150

Fermi-LAT Collab, arXiv:1705.00009

Caution for Pulsar Interpretation

Fermi-LAT Collab, ApJ 750:3 (2012)

- current foreground models still produce highly correlated residuals.
- point source mis-modeling introduces point-source-sized structure near G.C.
- The number of observed LMXBs already suggests ~4-23% of the excess is from pulsars. (Haggard+, JCAP 05 (2017) 056)

GCE in the Dark Matter Halo? Yes!

- Parameter space of dark matter interpretation is consistent with GC excess.
- If non-DM, non-pulsar explanation, it requires another coincidence.

Power Spectrum of High-Latitude γ Rays

- At high energies, structure is consistent with unresolved population of extragalactic blazars.
- Below 1 GeV prefers a new source, not consistent with any known emitter.
- Can be accounted for by dark matter, but precise characterization needs a new analysis that doesn't assume the source is Poissonian.

Fornasa+, PRD94, 123005 (2016); Ando+, PRD95, 123006 (2017)

Cross-correlating Fermi-LAT γ rays with galaxy catalogs (2MASS, LRGs, SDSS) and with cosmic shear are producing positive detections. These would also contain information about dark matter contributions, but interpretation is tricky.

Positron Excess?

AMS-02, PRL 113, 121101 (2014)

- AMS-02 measurement is increasing in significance.
- Too bright to be consistent with GCE.
- Most dark matter interpretations ruled out by lack of γ rays from dwarf satellites.
- Recently, HAWC detected an inverse-Compton halo around Geminga and PSR B0656+14.
- Energetics are at the magnitude needed to account for the excess of positrons (details still uncertain).
- Geminga could make using positrons for searching for dark matter difficult.

Hooper et al., arXiv:1702.08436

Sum

 $+ \Phi_{e^-}$

Geminga B0656+14

Antiprotons Excess

ь 10

10

1-3σ GCE

1-3σ CR

 $m_{\rm DM}$ [GeV]

1-3σ CR+GCE

1-3σ GCE+CR+DW

1-3σ GCE

1-3g CR+GCF

1-3σ GCE+CR+DW

1-3σ CR

 $m_{\rm DM}$ [GeV]

10

- AMS-02 measurements of antiproton flux is now very precise.
- Again, the observed excess is consistent ٠ with the GC excess.

Final Comments

- A coherent picture appears to possibly be emerging of dark matter annihilation. In many ways, this appears like a WIMP signal we have been looking for.
- Significance of this scenario is still weak, but strengthened by correlated observables.
- Also notable where the signal is not seen:
 - dwarf satellite γ rays,
 - synchrotron in M31 and M33.
- If we're seeing dark matter, we will expect existing excesses to grow in significance, and other GC-like excesses to continue to emerge elsewhere.