New Observational Windows for Probing Dark Sectors

Yanou Cui

UC Riverside

DaMaSc IV: Beyond WIMP DM Aug 30, 2017

$$\Omega_{\chi} \propto \langle \sigma_{\rm ann} v \rangle^{-1}$$

$$\sim 0.1 \left(\frac{G_{\rm Fermi}}{G_{\chi}} \right)^2 \left(\frac{M_{\rm weak}}{m_{\chi}} \right)^2$$

WIMP Miracle!

 But no convincing signal yet: many years, many experiments...

$$\Omega_{\chi} \propto \langle \sigma_{\rm ann} v \rangle^{-1}$$

$$\sim 0.1 \left(\frac{G_{\rm Fermi}}{G_{\chi}} \right)^2 \left(\frac{M_{\rm weak}}{m_{\chi}} \right)^2$$

WIMP Miracle!

• But no convincing signal yet: many years, many experiments...

WIMP Miracle!

• Expand the theoretical vision: beyond a single WIMP light DM, axion, sterile ν , non-minimal thermal dark sector

• But no convincing signal yet: many years, many experiments...

WIMP Miracle!

 Expand the theoretical vision: beyond a single WIMP light DM, axion, sterile ν, non-minimal thermal dark sector ★

Simple Variations of WIMP Miracle

 Decouple DM thermal relic abundance from coupling to the SM

Simple Variations of WIMP Miracle

 Decouple DM thermal relic abundance from coupling to the SM

Safely evades direct detection, subject to indirect detection

Determines Ω_{DM}!

WIMP miracle intact!

$$\Omega_{\chi} \propto \langle \sigma_{\rm ann} v \rangle^{-1}$$

 All conventional searches absent/suppressed

Not just "WIMP", applies to thermal freezeout of DM with general masses! Determines Ω_{DM}!

WIMP miracle intact!

$$\Omega_{\chi} \propto \langle \sigma_{\rm ann} v \rangle^{-1}$$

 All conventional searches absent/suppressed

Not just "WIMP", applies to thermal freezeout of DM with general masses! Determines Ω_{DM}!

WIMP miracle intact!

$$\Omega_{\chi} \propto \langle \sigma_{\rm ann} v \rangle^{-1}$$

 All conventional searches absent/suppressed

SM

• What is *X*?

at neutrino experiments (YC w/Agashe, Necib, Thaler; YC w/Berger, Zhao)

▶ m_X≤eV: Ω_X ✓ ☞ relativistic, dark radiation in the CMB

X-SM interaction not necessary (YC w/Chacko, Hong, Okui)

Not just "WIMP", applies to thermal freezeout of DM with general masses!

Determines Ω_{DM}!

WIMP miracle intact!

$$\Omega_{\chi} \propto \langle \sigma_{\rm ann} v \rangle^{-1}$$

 All conventional searches absent/suppressed

- What is X?
 - m_X≥eV: Ω_X>1 [™] deplete X via annihilation→SM Novel signal: **Boosted DM (X)!** (Vs. "slow" DM)

SM

- ▶ m_X≤eV: Ω_X ✓ ☞ relativistic, dark radiation in the CMB
 - X-SM interaction not necessary (YC w/Chacko, Hong, Okui)

Dark matter lives in a non-minimal hidden sector!

(a **thermal** bath of DM, X, +...)

Rising interest, covers a great variety of DM models:

atomic DM, multi-component DM, dynamical DM, SIDM, twin Higgs DM, DDDM...

What can possibly live in the mysterious \sim 25% of our universe?

Rising interest, covers a great variety of DM models:

atomic DM, multi-component DM, dynamical DM, SIDM, twin Higgs DM, DDDM...

What can possibly live in the mysterious \sim 25% of our universe?

Too "complicated"? Occam's razor?

Occam's Razor: No more things should be presumed to exist than are absolutely necessary, i.e., the fewer assumptions an explanation of a phenomenon depends on, the better the explanation.

(William of Occam)

Rising interest, covers a great variety of DM models:

atomic DM, multi-component DM, dynamical DM, SIDM, twin Higgs DM, DDDM...

What can possibly live in the mysterious ~25% of our universe?

Too "complicated"? Occam's razor?

Occam's Razor: No more things should be presumed to exist than are absolutely necessary, i.e., the fewer assumptions an explanation of a phenomenon depends on, the better the explanation.

(William of Occam)

Rising interest, covers a great variety of DM models:

atomic DM, multi-component DM, dynamical DM, SIDM, twin Higgs DM, DDDM...

What can possibly live in the mysterious ~25% of our universe?

Too "complicated"? Occam's razor?

Shave our SM??

Occam's Razor: No more things should be presumed to exist than are absolutely necessary, i.e., the fewer assumptions an explanation of a phenomenon depends on, the better the explanation.

(William of Occam)

No clue? "Nightmare" for discovery?

Rising interest, covers a great variety of DM models:

atomic DM, multi-component DM, dynamical DM, SIDM, twin Higgs DM, DDDM...

What can possibly live in the mysterious ~25% of our universe?

Too "complicated"? Occam's razor?

Shave our SM??

Occam's Razor: No more things should be presumed to exist than are absolutely necessary, i.e., the fewer assumptions an explanation of a phenomenon depends on, the better the explanation.

(William of Occam)

- No clue? "Nightmare" for discovery?
 - Universal guidelines
 - ✓ New observational windows!

(this talk...)

Episode- #1

Boosted Dark Matter

JCAP 1410 (2014) 062, **YC** w/Agashe, Necib, Thaler; JCAP 1502 (2015), **YC** w/Berger, Zhao; **YC** et.al w/Mircoboone/DUNE collaboration (in progress)

Massive X

 $(DM \rightarrow DMA, X \rightarrow DMB)$

Boosted Dark Matter

Key Processes

$$m_A > m_B, \ \Omega_B < \Omega_A \approx \Omega_{\rm DM}$$

Boosted DM B!
$$\gamma_B = m_A/m_B$$

Boosted Dark Matter

Key Processes

 $m_A > m_B, \ \Omega_B < \Omega_A \approx \Omega_{\rm DM}$

• DM B
• C
• E
• SM (e-, p) SM (e-, p)

Deplete Ω_B

B-SM scattering

detectability!

Boosted DM B! $\gamma_B = m_A/m_B$

Boosted Dark Matter

Key Processes

B-SM scattering

- detectability!

Boosted DM B! $(\gamma_B = m_A/m_B)$

Model Example

• Dirac fermion $\psi_A, \ \psi_B, \ m_A > m_B$, stabilized by $\mathbb{Z}_2 \times \mathbb{Z}_2$

$$\mathcal{L} \supset \frac{1}{\Lambda^2} \overline{\psi}_A \psi_B \overline{\psi}_B \psi_A$$
 $\overline{\psi}_A \longrightarrow \overline{\psi}_A \longrightarrow \overline{\psi}_$

Benchmark: $m_A \simeq \mathcal{O}(10 \text{ GeV}), \quad m_B \simeq \mathcal{O}(100 \text{ MeV}), \quad m_{\gamma'} \simeq \mathcal{O}(10 \text{ MeV}).$ $g' \simeq O(0.1), \ \epsilon \simeq O(10^{-3})$

How to Search for Boosted DM?

- Mono-energetic ($E_B=m_A$), small flux $\propto n_{\rm DM-A}^2$
- Boosted incoming B
 - ⇒ Relativistic outgoing e-, p

How to Search for Boosted DM?

- Mono-energetic ($E_B=m_A$), small flux $\propto n_{\rm DM-A}^2$
- Boosted incoming B
 - ⇒ Relativistic outgoing e⁻, p

What experiments?

Large volume detector + sensitive to energetic e-, p

How to Search for Boosted DM?

- Mono-energetic ($E_B=m_A$), small flux $\propto n_{\rm DM-A}^2$
- Boosted incoming B
 - ⇒ Relativistic outgoing e-, p

What experiments?

Large volume detector + sensitive to energetic e-, p

Experiments for neutrinos or proton decay!

- Based on Cherenkov-radiation:
 SuperK/HyperK, IceCube/PINGU...
- Based on ionization: (next generation!)
 DUNE/LBNF... (liquid Argon)

IceCube

SuperK

 A combination of conventional DM indirect and direct detections; e.g. Boosted DM from the GC:

 A combination of conventional DM indirect and direct detections; e.g. Boosted DM from the GC:

 A combination of conventional DM indirect and direct detections; e.g. Boosted DM from the GC:

 A combination of conventional DM indirect and direct detections; e.g. Boosted DM from the GC:

Distinguishable from ν !

- Directionality
- No charge current interaction (e.g. muon veto)

Analysis, Prospect

- Exclusion from Super-K all-sky data
- Sensitivity projections for various experiments

Model-dependent constraints (light grey lines ✓):

- Dark photon search
- Direct detection of DM
 A, B ✓
- CMB heating/BBN from thermal B annihilation ✓
- DM search at colliders

. . .

Analysis, Prospect

- Exclusion from Super-K all-sky data
- Sensitivity projections for various experiments

Model-dependent constraints (light grey lines ✓):

- Dark photon search
- Direct detection of DM
 A, B ✓
- CMB heating/BBN from thermal B annihilation
- DM search at colliders

. . .

- Boosted DM: New scientific goal for neutrino experiments
 - direct detection of DM sector!
- Substantial interest from neutrino physicists, collaborations

(Super-K/Hyper-K, Microboone/DUNE)

- Episode #2

▶ $m_X \le eV$: $\Omega_X \checkmark$, do not need further depletion/interaction w/SM!

- Episode #2

▶ $m_X \le eV$: $\Omega_X \checkmark$, do not need further depletion/interaction w/SM!

Nightmare for discovery? (gravity...)

- Episode #2

▶ $m_X \le eV$: $Ω_X \checkmark$, do not need further depletion/interaction w/SM!

Nightmare for discovery? (gravity...)

X is relativistic, dark radiation in the Cosmic Microwave Background (CMB)!

(YC w/Chacko, Hong, Okui; Adshead, Shelton; Brust, Sigurdson)

Until~3.8×10⁵ yrs after big bang: photon-baryon fluid, acoustic oscillation

Cosmic fossil: cosmic sound waves!

Until~3.8×10⁵ yrs after big bang: photon-baryon fluid, acoustic oscillation

CMB: photon decouples from baryon- γ fluid at $T \sim eV$ (2.7255 K)

Cosmic fossil: cosmic sound waves!

CMB sky map

Fourier transform

CMB anisotropy spectrum

Until~3.8×10⁵ yrs after big bang: photon-baryon fluid, acoustic oscillation

CMB: photon decouples from baryon- γ fluid at $T \sim eV$ (2.7255 K)

Cosmic fossil: cosmic sound waves!

CMB sky map

Fourier transform

CMB anisotropy spectrum

Beyond the SM particle w/m≤T_{CMB}~eV

- Relativistic at CMB, $\rho_{rad}\uparrow$, $H_{CMB}\uparrow$
- Affect CMB spectrum by increasing effective neutrino number, ΔN_{eff}

 $(N_{eff} = 3.046 \text{ in SM})$

e.g. suppress high ℓ peak amplitude

$$\Delta N_{\rm eff} = \rho_{\rm DR} : \rho_{1\nu}, \ \rho_{\rm DR} \propto g_{*\rm DR} T_{\rm DR}^4$$

- g_{*DR} : Number of degrees of freedom in DR
- $ightharpoonup T_{
 m DR}$: when dark sector and SM kinetically decouple

Does dark radiation interact at the CMB time?

- ► Free-streaming DR: *L*_{mean-free} > *H* ⁻¹ , e.g. SM neutrinos
 - Implicitly assumed in official expt. analysis (e.g. Planck)
- ► Scattering (fluid-like) DR: L_{mean-free} < H⁻¹, generic in a dark sector
 - Not included! But…

Observable Difference Between the Two Types of DR

- Free streaming species: $V_{FS} > V_{sound} \longrightarrow \sigma$: anisotropy in $T^{\mu\nu}$
- Observable effects increase with FS energy fraction: $f_{\nu} \equiv \frac{\rho_{\rm all\ free\ rad}}{\rho_{\rm all\ rad}}$

photon perturbation
$$\ddot{d\gamma} - c_{\gamma}^2 \, \nabla^2 d_{\gamma} = \nabla^2 \Phi_+$$

Gravitational forcing;

w/anisotropy, e.g.

 d_{γ} out of phase w.r.t

free oscillating

♦ Universal phase shift of high ℓ peaks (SM ν: Bashinsky, Seljak 2003)

$$\begin{split} \Delta \ell &\equiv \delta \ell - \delta \ell \big|_{\mathrm{SM}} \\ &= -57 \big(f_{\nu} - f_{\nu} \big|_{\mathrm{SM}} \big) \frac{\ell_{\mathrm{A}}}{300} \quad \text{Opposite sign!} \\ &\simeq -7.8 \, \big(0.59 \Delta N_{\mathrm{eff}}^{\mathrm{free}} - 0.41 \Delta N_{\mathrm{eff}}^{\mathrm{scatt}} \big) \frac{\ell_{\mathrm{A}}}{300} \\ &\quad \text{(YC, w/Chacko, Hong, Okui 2015)} \end{split}$$

Add free-streaming DR
$$\longrightarrow f_{\nu}$$
 Add scattering DR $\longrightarrow f_{\nu}$

Cosmological Constraints on Interacting Light Particles

(YC with Brust and Sigurdson, JCAP, arXiv: 1703.10732)

• Two param fit: N_{fld} , N_{eff}

• More robust/physical param: *f_{fs}, N_{tot}*

Figure 2. Here we show two different 2d posteriors for three of the five scans (Planck T, Planck P+BAO, and Planck P+BAO+ H_0 +LSS). The solid lines are 1σ contours, and the dot-dashed lines are 2σ contours. The posteriors in the top figure exhibit degeneracy between $N_{\rm eff}$ and $N_{\rm fld}$, motivating the parametrization in terms of $N_{\rm tot}$ and $f_{\rm fs}$ in the bottom figure, and demonstrating that the strongest constraints arise on the sum $N_{\rm tot}$.

(also see: Baumann, Green, Meyers, Wallisch v2)

 $\Delta N_{\rm tot} < 0.39 \text{ at } 2\sigma$

A Theoretical Benchmark for Dark Radiation Search with CMB

(YC w/Adshead, Shelton, 2016)

• If a dark sector is ever in thermal equilibrium with SM \Rightarrow A lower limit on ΔN_{eff} ! (insensitive to dark sector details!)

A Theoretical Benchmark for Dark Radiation Search with CMB

(YC w/Adshead, Shelton, 2016)

• If a dark sector is ever in thermal equilibrium with SM \Rightarrow A lower limit on ΔN_{eff} ! (insensitive to dark sector details!)

• (preliminary) Forecast for future CMB-S4? $\sigma(N_{\rm eff}) \approx 0.015 - 0.03$

A Theoretical Benchmark for Dark Radiation Search with CMB

(YC w/Adshead, Shelton, 2016)

• If a dark sector is ever in thermal equilibrium with SM \Rightarrow A lower limit on ΔN_{eff} ! (insensitive to dark sector details!)

- (preliminary) Forecast for future CMB-S4? $\sigma(N_{\rm eff}) \approx 0.015 0.03$
 - Likely able to discover or exclude <u>any</u> hidden dark sector once in equilibrium with SM!
 - Timely theoretical motivation/benchmark for setting performance goal of CMB-S4

A Unified Picture of Thermal DM

A universal guideline:

Last carrier of the dark sector entropy, e.g. the X, analogous to SM γ , ν ! (generalized concept of dark radiation)

A Unified Picture of Thermal DM

A universal guideline:

Last carrier of the dark sector entropy, e.g. the X, analogous to SM γ , ν ! (generalized concept of dark radiation)

A Unified Picture of Thermal DM

A universal guideline:

Last carrier of the dark sector entropy, e.g. the X, analogous to SM γ , ν ! (generalized concept of dark radiation)

- X: subdominant abundance, $\Omega_X < \Omega_{DM}$ yet plays an important cosmological role!
- X: may be the smoking-gun for the whole dark sector!
 New observational directions!

Conclusion/Outlook

- Thermal Dark Sectors: motivated scenario
 - Systematic studies feasible, despite complexity
 - New directions for DM searches: neutrino experiments, CMB, (structure formation)...

Further directions:

- General studies on non-gravitational signatures of dark radiation (e.g. with DM direct detection, work in prep)
- Effects of DM-DR interaction on CMB, LSS:
 - Partially Acoustic Dark Matter (PAcDM) (YC with Chacko, Hong, Okui and Tsai, arxiv: 1609.03569, JHEP): H_0 , σ_8
 - Non-thermal injection of DR from DM annihilation (work in progress)

Backup Slides

Nightmare scenario (?):
What if DM/DS does not couple to SM?

Nightmare scenario (?):

What if DM/DS does not couple to SM?

No, everything couples to gravity!

Nightmare scenario (?):

What if DM/DS does not couple to SM?

No, everything couples to gravity!

Nightmare scenario (?):

What if DM/DS does not couple to SM?

No, everything couples to gravity!

Puzzles from Large Scale Structure

Poulin et. al. 1606.02073

Comparing to ACDM model, we want to obtain a

- Smaller density perturbation
- Larger Hubble expansion rate at the late time universe