ISO, LPC, NEO Science

Karen Meech

Enabling Fast Response Missions to NEOs, ISOs and LPCs

KISS workshop: October 24, 2022
Life Requires water

- Astrobiology seeks to understand how habitable worlds are made
- Habitability = water, organics, rocky planet, the right temperature

As of Oct 24, 2022: ~50 potentially habitable planets
5,190 confirmed, 8,954 candidates, 3,882 planet systems, 190 terrestrial planets

Credit: NASA/JPL-Caltech
How do we explore Habitable Planet formation in our Solar System?

Remnants of planet formation, Little altered for 4.5 Gy

Comets

Icy asteroids
Primitive Tracers

A. **Meteorites (well-studied)**
 - Contain water, have been altered

B. **Icy asteroids & NEOs (largely unexplored)**
 - Formed locally, or migrated from farther out
 - Contain unaltered material that can provide clues

C. **Comets (many missions, ground, but new classes)**
 - Formed cold, remained cold, untraceable dynamics

D. **Icy satellites (Cassini)**
 - Formed cold, have been heated – evolved

E. **Interstellar objects (unexplored....)**
Icy Body Evolution in our Solar System

- Protoplanetary Disk
- Oort Cloud
 - Inner
 - Outer
- Kuiper Belt
 - Classical
 - Resonant
 - Scattered
 - Detached
- HTC
- Centaurs
- JFC

Planetary or Stellar impact, Disintegration, Ejection

Damocloids

ISOs

Kuiper Belt

Classical

Resonant

Scattered

Detached

Main belt

comets

Icy Body Evolution in our Solar System
JFCs – Missions & Ground-Based

• Nucleus
 – Sizes collisional, small ones missing
 – Very low density, thermal conductivity \rightarrow pristine
 – Dust shows movement in disk
 – Very little surface ice, low albedo
 – CO$_2$ a driver of activity

• Formation Implications
 – Chemistry not linked to dynamical regimes
 • Comparing JFC & LPCs
 • C-poor, C-normal comets
 – D/H uncorrelated with dynamics
 • Other Isotopes?
JFCs – Rosetta

• **Rosetta is the most ambitious and productive comet mission to date**
 – Comets have heritage from their formation, but it is a really mixed reservoir
 • Comets form over a wide range of distances outside snowline
 – New insight into how comets work (thermal inertia, porosity, where the ice is)
 • Interior structure relatively uniform
 – Rich array of pre-biotic chemical species
 – Comets may represent primordial planetesimals (density, porosity, low T ices)

• **Questions**
 – What is primordial and what is the effect of insolation?
 – How and where do comets form?
 – What role do comets play in bringing volatiles to the inner solar system – i.e. Earth?
Chemistry is set by temperature
Giant planets move things as they grow
JFCs form in outer disk
LPCs form in giant planet region

Disk figures from I. Cleeves
Long Period Comets

• Very bright comets are Rare
 – 12 very bright comets in ~270 yrs
 – Brighter than 0 mag every ~15 yrs

C/2006 P1 (McNaught)
q = 0.17 AU
Photo: fir0002/Flagstarrotos
- **Nucleus**
 - Very little known

- **Chemistry**
 - Organic abundance not correlated with dynamical regimes
 - Only LPCs seem to be rich in CO

CO Abundance, % wrt H2O

Paganini et al (2014)

LPC Paradigm is Changing

- Activity levels
- Formation location

McNaught 2006; Mag -7

Hale-Bopp, 1995, Mag -2

Lovejoy, 2011 Mag -6

C/2010 US10 – mag 6

C/2014 Q2 Lovejoy, 2014 – mag 4

C/2016 R2 – mag 8

C/2007 N3 – mag 4
Aug 2013 Pan-STARRS1 Survey discovers unusual LPC
- Very inactive near perihelion
- Spectrum consistent with inner solar system rocky asteroids
- May have formed near the SS snowline, ejected to Oort cloud early

A New type of LPC: –Manxes
Comet Turn on: C/2015 ER61 PanSTARRS

- Long period comet orbit
 - discovered Mar 14, 2015
 -Inactive at $r = 8.44$ au
 - A very large Manx? → no
 - CO$_2$-driven activity began at 8.8 au, then water began around 5 au
C/2014 S2 (PANSTARRS)

- Activity controlled by CO₂
- Ejects large icy "grains" → H₂O production
- Outbursts from ice at depths of 0.3-0.8 m

C. Urasaki et al (in prep.)
ISOs – LPCs from another Solar System

- **10/19** – Discovered by PS1 → P10Ee5V
- **10/18** – Prediscovery in Pan-STARRS data
- **10/20, 22** – Follow up → $e = 1.19$
- **10/24** – Orbit on MPC
- **10/26** – Designated A/2017 U1
"Oumuamua: Scout or messenger sent from our distant past to reach out to us or build connections with us

• What do we want to know?
 – What are its characteristics?
 • Size & shape, mass, density, rotation
 – What is it made of?
 • Color, spectral features?
 • Comet or asteroid?
 • Gas chemistry? Isotopes?
 – Where does it come from?
• Resources
 – 15 large telescopes/satellites, 100+ hrs of time

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louis</td>
<td>Sep 9-q, 14-close Earth</td>
<td>16</td>
<td>17</td>
<td>18-PS1 Precovery</td>
<td>19-PS1 Discovery</td>
<td>20-Astrometry</td>
</tr>
<tr>
<td>22</td>
<td>23-VLT, GS prop; VLT Approve</td>
<td>24-GS prop Approve; MPEC orbit</td>
<td>25-VLT ★, HST prop submit, UKIRT DD</td>
<td>26-VLT, GS ★; HST Approve; PR</td>
<td>27-GS, CFHT, UKIRT, Keck ★</td>
<td>28-UKIRT ★</td>
</tr>
<tr>
<td>29 – Hawaiian name</td>
<td>30-Name to IAU</td>
<td>31-Nature paper submit</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6-Referee Rpt. IAU Name OK</td>
<td>7</td>
<td>8-Resubmit paper</td>
<td>9</td>
<td>10-Paper in production</td>
<td>Published 11/20</td>
</tr>
</tbody>
</table>
1I/‘Oumuamua Characteristics

- **Size, Albedo**
 - Avg radius ~ 100 m for 4% reflectivity
 - Surface is red, Albedo not measured

- **Shape & Rotation**
 - Complex rotation
 - Very elongated

- **No dust, no gas**
 - maximum mass ~1-2 kg
 - µm sized dust within 750 km
Origin of the Shape?

- Fluidization to Jacobi ellipsoid during red giant phase
 - Katz (2018)

- Interstellar ablation
 - Domokos (2017)

- Giant planet ejection
 - Raymond (2018)

- Tidal disruption by giant planets
 - Cuk (2017), Rafikov (2017)

- Tidal disruption by white dwarf star, or binary system
 - Pfaizner (2021)

- Stripped from star during cluster phase

- Post-main sequence stars
 - Hansen (2017)

- Misaligned circumbinary disks
 - Childs & Martin (2022)

- Molecular H2 iceberg
 - Seligman (2020)

- Nitrogen iceberg
 - Desch (2021)

- CO sublimation
 - Seligman (2021)
• Gravity only does not work
• Acceleration directed radially away from Sun (similar to that of comets): $\rightarrow A \propto g(r), g(r) \propto r^{-2}$
• Inferences about chemistry

Bailer Jones et al 2018

Micheli et al 2018

<table>
<thead>
<tr>
<th>Star</th>
<th>Type</th>
<th>Enc Dist</th>
<th>Enc vel</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIP 3757</td>
<td>M2.5 dwarf</td>
<td>0.6 pc</td>
<td>24.7 km/s</td>
<td>1 Myr</td>
</tr>
<tr>
<td>HD 292249</td>
<td>G5 dwarf</td>
<td>1.6 pc</td>
<td>10.7 km/s</td>
<td>3.8 Myr</td>
</tr>
<tr>
<td>Home 3</td>
<td></td>
<td>0.66 pc</td>
<td>14.3 km/s</td>
<td>1.1 Myr</td>
</tr>
<tr>
<td>Home 4</td>
<td></td>
<td>0.9 pc</td>
<td>18.0 km/s</td>
<td>1.1 Myr</td>
</tr>
</tbody>
</table>

Revised with DR2 Reductions

Which Way home?
Why Finding “home” may be impossible
Gaia EDR3 release 40,000 stars within 100 pc, 1.6 Myr
The Second ISO - 2I/Borisov

- C/2019 Q₄, G. Borisov, Crimea
 - 8/30/2019 at 2.98 au, q = 2.006 au 12/8/19, e=3.36
 - Hyperbolic orbit on 9/11/19, Designated 2I on 9/24/19
- Characteristics
 - Red like 1I
 - CN detected 9/2019 (Fitzsimmons et al 2019)
 - Depleted in C-chain species (Opitom et al 2019)
 - HST: small radius 0.2-0.5 km (Jewitt et al 2020)

Our last HST observations were made Mar 2021, Mag > 27
Drivers of Activity

• Pre-discovery observations
 – Suggest CO-CO$_2$ as driver
• HST, Swift, ALMA observations
 – CO/H$_2$O = 130-155%
 – Different chemistry in home system?
• Activity Patterns
 – Water increased up to q, then dropped off
 – HST Mar 2020 split nucleus ~ 3 weeks after an outburst, and another split in July

(Ye et al. (2019), Bodewits et al, Cordiner et al. 2020)
The ISO “Legacy”

Characteristics

- 1I: Very small (102 m for 4% albedo), red, excited rotation, no dust/gas seen, non-grav. accn.
- 2I: Small (200 – 500 m), red, cometary, CO-rich, C-chain depleted

Future studies of ISOs – sampling chemistry of other star systems

- Unlikely we will be able to back-track the path to home star
- Capture of interstellar comets into the young solar system & Oort cloud?
- Have we already seen interstellar material in our solar system?
- Some answers will require in-situ investigation → missions
• Science perspective
 – Migrated from asteroid belt – variety of spectral types (origins)
 – Ryugu – like CCs, low T (37°C) aqueous alteration 1-2 Myr after CAI

• Planetary Defense Science Perspective
 – Rubble piles, high microporosity
 – Minimal internal strength
 – Surface regolith – lack substantial surface sub-cm material
NEOs Up Close

Itokawa (256 m radius)
1.9 g/cm³
S type

Ryugu (480 m)
1.3 g/cm³
C type

Bennu (243 m)
1.2 g/cm³
B type

Dimorphos (84 m)
2.7 g/cm³ (assumed)
S type
Discovery, Characterization, Warning Timescales

• Large all-sky surveys
 – Enable LPC discovery ~ 10 yrs pre-q

• Rubin Telescope
 – First light: Engineering Q4 2022, System Q3 2023
 – Survey begins 2024 Q3
 – Single visit – good S/N detections to mag 24
Key Questions

ISOs
• Chemistry
 – Volatiles & Isotopes
 – Dust
 – Surface materials vs bulk
• Nucleus
 – Size, shape, rotation
 – Density, porosity
 – Thermal properties
• Trajectory?

LPCs
• Chemistry
 – Volatiles & Isotopes
 – Dust
 – Surface materials vs bulk
• Nucleus
 – Size, shape, rotation
 – Density, porosity
 – Thermal properties

NEOs
• Nucleus
 – Mass, speed
 – Density, porosity, strength
 – Internal structure
• Composition
 – Ice, dust
 – Surface materials vs bulk