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NEW TOOLS FOR INVESTIGATING THE CARBON CYCLE:  
THE BACKGROUND
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Monthly MPI-GPP at 0.5o vs SIF (GOME-2) 
SIF is correlated with GPP 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Chlorophyll Fluorescence

SIF Results from the Decay of an Excited Chlorophyll Molecule
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Solar induced Fluorescence (SIF) is Specific to Light Absorbed by Chlorophyll
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SIF can be Detected from Space



• SIF is specific to vegetation
• Reflectance “sees” the whole scene
• SIF is less sensitive to atmospheric scattering
• SIF radiance is correlated with GPP 

(Uwe Rascher)HyPlant (aircraft) Image of SIF and Greeness



The correlation between SiF and GPP is based on: 
• Physiological control of the yield of fluorescence (     )  
• Structural properties of the canopy that effect leaf display 
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Physiology - PSII “decides” what to do with an absorbed photon
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Modeled Leaf Physiology



• We have linked a fluorescence parameterization to a 
conventional photosynthesis model by inverting the 
Genty equation.

• This requires knowledge of one more adjustable  
leaf property, KNo.  Requires PAM measurements.


• The Vcm RUBISCO (or effects of stress on it) have a 
large control on SIF.  

• This parameterization has been added to SCOPE 
and the land surface models, SiB and CLM.

Summary: Physiology and SIF



 Modeling studies with SCOPE indicate that near infrared 
reflectance (NIR) from vegetation is strongly correlated with SIF 
and is sensitive to differences in fluorescence yield.  

!

The Effect of Canopy Structure on SIF

The probability that a fluorescence photon escapes is similar to that of a reflected NIR photon.



NDVI x NIR Radiance = NIRV (vegetation)? 

NIRT * NDVI



Monthly MPI-GPP at 0.5o vs SIF (GOME-2) or NIRV (MODIS) 
CAN WE USE NIRV TO ESTIMATE GPP? 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Making the canopy integration factor (π) in the SiB 3 proportional to 
SIF or NIRV improves the match to observation at AmeriFlux sites.



Final Thoughts on SIF:

•  SIF is turning out to be surprisingly useful:

•  Seems to be proportional to GPP;

•  Indicates drought;

•  Indicates beginning and end of growing season. 

•  Seems to be related to Vcm Rubisco

•  It is also a hot topic in fundamental research on photosynthesis - connection 
to another community. 

• NIRV is a good proxy for SIF, but the latter would probably be more reliable if 
we had an appropriate satellite.

• OCS exchange may provide another way to check on GPP
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Atmospheric CO2 and OCS concentration

Carbonyl sulfide (COS or OCS) 
A new tracer for terrestrial photosynthesis



There is strong covariation of CO2 and OCS in the global atmosphere

Montzka, S. A., Calvert, P., Hall, B. D., Elkins, J. W., Conway, T. J., Tans, P. P., & Sweeney, C. (2007). On the global distribution, seasonality, 
and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. Journal of Geophysical Research, 112(D9), 1–15. 
http://doi.org/10.1029/2006JD007665
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Leaf Uptake OCS follows the same path as CO2



Keren Stimler and Dan Yakir of the  
Weizmann Inst. have conducted 
gas exchange studies on single 
leaves with a QCL 
spectrometer. 



Uptake of both CO2 and COS is stimulated by 
light. In the case of CO2 this is expected 
because synthesis of the CO2 acceptor, RuBP 
requires light.  No energy is required for 
hydrolysis of COS.

gsw = m · JCO2 ·
[H2O]v
[CO2]

+ b

Uptake of OCS is largely controlled by 
stomatal conductance (gsw) which is linked to 
photosynthesis (JCO2).

The intercept term (b) becomes important at low light.
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Coding it into a model 

gcell(COS) = vm(gi3 · C3 + gi4 · C4)
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Summary:
• CO2 uptake was modeled with a fitted Vmax for each leaf - no other 
adjustments.
• COS uptake was modeled using that Vmax with additional adjustments 
to the scaling factors, gi3 or gi4. 
• These differed from species to species by at least a factor of 3 - 
presumably due to differences in the ratio of carbonic anhydrase to 
Rubisco.
• Much of the noise is due to inaccuracy in modeling gsw.
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Diurnal Patterns of CO2 and OCS Exchange 
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Exchange processes “pull” the atmosphere in different directions in CO2 - OCS space
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I have only discussed OCS exchange in photosynthesis, 
respiration and soil production of OCS will be topics of later discussion.
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[OCS] vertical slice at Equator



Conclusions:

• COS has potential to help estimate GPP and by difference Respiration 
at site-, regional-, and global-scales.  

•  COS  should be highly correlated with solar induced fluorescence.

•  Our work has led to a substantial revisions of the global budget of 
COS. 

•  We posit the existence of a large source in the tropical oceans. There is 
satellite evidence to support this. No in situ studies of mechanism.

•  Models of soil uptake, soil production, anthropogenic production and 
ocean production (at least) are needed to complete the cycle.

• Inclusion of COS in data assimilation systems may help to understand 
the basis of inferred changes in net CO2 exchange over the continents.




