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Absorption of sunlight drives it all.
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Biggest 2 factors:

1) How much light is absorbed

by the antenna system?

2) How efficiently is this light used for
photosynthesis”?



The light reactions

Chl + hv — Chl*
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The light reactions
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The light reactions

Lowest excited state
“somewhat” stable (lifetime of a
few nanoseconds)

Can do:
1.Re-emit a photon 5
(fluorescence) B

2.Fall back to ground level
(release heat)

3. Transfer energy to another
chlorophyll

4.Perform photochemistry,
causing chemical reactions

Chl + hv — Chl*
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The light reactions
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Lifetime is actually the best metric for fluorescence vyield



Plants are not only light limited

— what happens to excess light?
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Plants are not only light limited

— what happens to excess light?
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Light absorption can be dangerous!

Photon Photon used for
intensity'::> photosynthesis

o Excess photons
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Light absorption can be dangerous!

First line

of defense:
Suppression
mechanisms

Heat

Second line
of defense:
Scavenging
systems (e.g.,
carotenoids,
superoxide
dismutase,
ascorbate)

\

)

Photon Photon used for
intensity'::> photosynthesis

Excess photons

Triplet state of Chl (3ChI™)
Toxic Superoxide (O,7)
photoproducts < Singlet oxygen ('0,%)
Hydrogen peroxide (H,05)
Hydroxyl radical (*OH)

Damage to D1
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Oxidized D1

4
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Need more pathways to quench absorbed
energy



Fate of absorbed photons in antenna system

Ky Solar
K+ Ki+ K, + K, photon

Fluorescence 5=
photon
Kr

Photochemistry Decay Heat

Taiz and Zeiger, "Plant Physiology", 2010.



Fate of absorbed photons in antenna system

Ky

Fluorescence ¢f=
photon

K+ Ki+ K, + K, photon

Photochemistry Decay Heat

Pure Chlorophyll Solution —> Kp and Kn=0, fluorescence vield around 1
higher fluorescence from Chl solution than leaf already found in 1874 (Mueller)

Taiz and Zeiger, "Plant Physiology", 2010.



Alternative method:
Avoid absorption in

the first place
— Leaf orientation
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Alternative method: Avoid absorption in the first place
— Chloroplast movements

(A) Darkness (B) Weak blue light

(C) Strong blue light

FIGURE9.5 Chloroplast distribution in photosynthesizing
cells of the duckweed Lemna. These surface views show the
same cells under three conditions: (A) darkness, (B) weak
blue light, and (C) strong blue light. In A and B, chloro-
plasts are positioned near the upper surface of the cells,

Taiz and Zeiger, "Plant Physiology", 2010.

where they can absorb maximum amounts of light. When
the cells were irradiated with strong blue light (C), the
chloroplasts move to the side walls, where they shade each
other, thus minimizing the absorption of excess light.
(Micrographs courtesy of M. Tlalka and M. D. Fricker.)



Fluorometer Light

Fluorescence Emission
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The leaf scale — Active Fluorometry
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Fluorescence yield
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AL=Actinic Light (moderate light was turned on 1> and off |)

SP = Saturating Pulse (strong pulsed light at each 1)



The leaf scale — Active Fluorometry
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The leaf scale — Active Fluorometry
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The leaf scale — Active Fluorometry
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The leaf scale — Active Fluorometry
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The leaf scale — Active Fluorometry
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THE POWER OF ACTIVE FLUOROMETRY
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THE POWER OF ACTIVE FLUOROMETRY
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THE POWER OF ACTIVE FLUOROMETRY
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THE POWER OF ACTIVE FLUOROMETRY
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THE POWER OF ACTIVE FLUOROMETRY
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General yield relationship

Quantum Yield of Fluorescence (®F)
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The leaf scale (why interested in SIF spectra”?)
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Porcar-Castell et al- Review paper



The leaf scale (why interested in SIF spectra”?)

SIF = SIF(PSIN) + SIF(PSI)
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The leaf scale (why interested in SIF spectra”?)

SIF = SIF(PSIN) + SIF(PSI)
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Kp IS variable Kp constant

back transfer of excitation at too high ETR steeper redox gradient, P700* itself a quencher

Porcar-Castell et al- Review paper



The leaf scale (why interested in SIF spectra”?)

SIF = SIF(PSIN) + SIF(PSI)
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back transfer of excitation at too high ETR steeper redox gradient, P700* itself a quencher
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Combine PAM with SIF spectral shape measurements

A modified WALZ GFS-3000 system

Magney, Frankenberg et al, New Phytologist 2017
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Remote Sensing of vegetation and SIF
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KISS director has a relevant hobby

Land Surface Remote Sensing (ONIR photography picture from Tom Prince, Caltech)



How to measure an additive signal?
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How to measure an additive signal?
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How to measure an additive signal?
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History of Fraunhofter line in-filing studies
Lunar Luminescence (1950-1960), started with NA Kozyrev in 1956

Luminescence of the Moon —
and Solar Activity . [ f

Zdenék Kopal
Department of Astronomy, University of Manchester, Manchester, England

———
W
——-w———-:

Figure 9-2: The line-depth method of detecting lumi-
nescence calls for comparing profiles of absorption lines
in the spectra A of the sun (/#f1) and moon (right).
An increase in the residual intensity in the case of the
moon is a measure of the light (i) attributable to lunar
luminescence—in this example 16.67 per cent of the

total moonlight.



History of Fraunhofter line in-filing studies

Potter et al, 1984 —> unlikely to be a thermal effect (using multiple spectral ranges)

JOURNAL OF GEOPHYSICAL RESEARCH w
Solid Earth

PDF

Explore this journal >

oo Lunar luminescence and the filling-in of
Fraunhofer lines in moonlight
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History of Fraunhofer line in-filling studies

Grainger and Ring —> Detected Anomalous Fraunhofer Line Profiles in scattered sun-light

Letters to Nature

Nature 193, 762 (24 February 1962) | doi:10.1038/193762a0

Anomalous Fraunhofer Line Profiles

J. F. GRAINGER & J. RING

1. Department of Astronomy, The University, Manchester.

DURING the spring of 1961 we made observations of the H a1
line of Ca(Il) in the spectrum of moonlight, with the view of
detecting any luminescent radiation which might have been
present. The observations were made with the 50-in. reflector of

the University of Padua’'s Observatory at Asiago.



History of Fraunhofter line in-filing studies

Theoretical Explanation by Brinkmann — Rotational Raman Scattering (RRS) in N2 and O2

ROTATIONAL RAMAN SCATTERING IN
PLANETARY ATMOSPHERES*

R. T. BRINKMANN

Division of Geological Sciences, California Institute of Technology,
and Jet Propulsion Laboratory, Pasadena, California

Recetved March 9, 1968, revised May 24, 1908

ABSTRACT

When spectra of decp solar Fraunhofer lines recorded in sunlight scattered by the Earth’s atmosphere
arc compared with similar spectra of direct, unscattered sunlight, it is found that the scattered line
profiles are systemadtically less deep (relative to the continuum) than the direct profiles by a few per cent.
This has been taken to indicate the presence of an extra, inelastic component of the scattered radiation
field. Its nature has remained unexplained. In this paper it is pointed out that rotational Raman scattering
in the atmosphere can be expected to produce just such an extra component. Previous observational work
is reviewed and interpreted in light of this explanation. The magnitude of the effect in the atmospheres of
other planets is also briefly explored.



History of Fraunhofer line in-filling studies
In-depth study by Kattawar et al in 1980, RRS henceforth called “Ring” effect

INELASTIC SCATTERING IN PLANETARY ATMOSPHERES.
. THE RING EFFECT, WITHOUT AEROSOLS

GFRORGE W. KATTAWAR, ANDREW T. YOUNG, AND TERRY J. HUMPHREYS
Texas A & M University

Received 1980 June 30, accepred 1980 August 11

ABSTRACT

We have investigated the contribution of inelastic molecular scattering (Rayleigh-Brillouin and
rotational Raman scattering) to the filling-in of Fraunhofer lines in the light of the blue sky. Aerosol
fluorescence 1s shown to be negligible, and aerosol scattering is ignored in this paper. We discuss the
angular and polarization dependences of the filling-in detail for single scattering. An approximate
treatment of multiple scattering, using a backward Monte Carlo technique, allows us to investigate the
effects of the ground albedo. As the molecular scatterings alone produce more line-filling than is
observed, it seems likely that aerosols dilute the effect by contributing unaltered sunlight to the

observed spectra.
Subject headings: planets: atmospheres — polarization — radiative transfer



Need absorption features that are only un-changed
N the atmosphere —> Fraunhofer lines are ideal

— Disk Integrated Solar Irradiance Spectrum at 0.05nm spectral resolution
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Incoming at the surface

2000 - Disk Integrated Solar Irradiance Spectrum at 0.05nm spectral resolution at surface level
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After reflection from canopy

Resulting reflected radiance
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Ratio Spectrum (with/without SIF)

Ratio spectrum with and without SIF
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Ratio Spectrum (with/without SIF)
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Hemispheric-scale CO2 derivatives and SIF

CO»> time derivative at Mauna Loa and S1F between 30N and 60N
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The view from space: Now OCO-2

Sun et al, Solar-induced chlorophyll fluorescence from the Orbiting Carbon Observatory-2: Overview of the retrieval and biophysical performance
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Primary Modes of GPP

Sun, Frankenberg et al, to be published end of Sept.
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CFIS — Chlorophyll Fluorescence Imaging Spectrometer

Figure 2: Left: CFIS computer-aided design model, showing the mechanical and optical
layout. Right: Picture of CFIS without housing can in the laboratory.
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OCO-2 underpasses — OCO2 SIF
N
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OCO-2 SIF validation (via CFIS)

- Aug. 16 OCO-2 overpass
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Aug. 13 OCO-2 overpass — CFIS
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Ground-based measurements
PhotoSpec systems, enable by KISS
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Ground-based measurements
PhotoSpec systems, enable by KISS
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The future from space

- TROPOMI (will be launched soon, fingers crossed)
- FLEX (chosen by ESA as Earth Explorer 8)
- GeoCARB (Geostationary, SIF no primary focus though)

- Sentinel 37?



