ECOSYSTEM-scale PROBLEM: What is GPP?

Standard Solution (Reichstein et al., 2005):(1) DER = nighttime NEE regressed vs.Temperature

EDDY COVARIANCE FROM FLUX TOWERS OBSERVES

NET ECOSYSTEM-ATMOSPHERE CO₂ EXCHANGE (NEE)

We <u>want</u> *photosynthesis* (Gross primary production, or **GPP**) and *Daytime Ecosystem Respiration* (**DER**)

ECOSYSTEM-scale PROBLEM: What is GPP?

Standard Solution (Reichstein et al., 2005):
(1) DER = nighttime NEE regressed vs.
Temperature (& extrapolated to day)
(for ~1-2 week moving window)

EDDY COVARIANCE FROM FLUX TOWERS OBSERVES

NET ECOSYSTEM-ATMOSPHERE CO₂ EXCHANGE (**NEE**)

We <u>want</u> *photosynthesis* (Gross primary production, or GPP) and *Daytime Ecosystem Respiration* (DER)

ECOSYSTEM-scale PROBLEM: What is GPP?

Standard Solution (Reichstein et al., 2005):
(1) DER = nighttime NEE regressed vs.
Temperature (& extrapolated to day)
(for ~1-2 week moving window)

(2) GPP = NEE - DER (residual)

EDDY COVARIANCE FROM FLUX TOWERS OBSERVES

NET ECOSYSTEM-ATMOSPHERE CO₂ EXCHANGE (NEE)

We <u>want</u> *photosynthesis* (Gross primary production, or **GPP**) and *Daytime Ecosystem Respiration* (**DER**)

Key Assumption: Daytime physiology is like the nighttime

One equations in two unknowns (GPP & R_{eco})

$$NEE = \underline{GPP} + \underline{R}_{eco}$$

Key: we need a second equation

Two equations in two unknowns (GPP & R_{eco})

$$NEE = \underline{GPP} + R_{eco}$$

Key: Adding this second equation:

Flux-weighted *Isotopic composition* of:

$$\delta_{\text{NEE}}^{13} \text{NEE} = \delta_{\text{GPP}}^{13} \underline{\text{GPP}} + \delta_{R}^{13} \underline{\text{R}}_{\text{eco}}$$

Net flux

photosynthetic flux

Respiration flux

$$\delta_X^{13} = \frac{\binom{13}{13} \frac{C}{^{12}C}_X}{\binom{13}{13} \frac{C}{^{12}C}_{ref}} - 1 \quad \delta^{13} \text{ is } ^{13}C \text{ content of sample relative to a standard}$$

Two equations in two unknowns (GPP & R_{eco})

$$NEE = \underline{GPP} + \underline{R}_{eco}$$

Key: Adding this second equation:

$$\delta_{\text{NEE}}^{13} \text{NEE} = \delta_{\text{GPP}}^{13} \underline{\text{GPP}} + \delta_{R}^{13} \underline{\text{R}}_{\text{eco}}$$

works by solving for GPP and DER (R_{eco} during the day), given distinct stable isotopic signatures, δ^{13}

Yakir & Wang 1996, Bowling et al. 2001, ...

$$\delta_X^{13} = \frac{\binom{13}{13} \cdot \binom{12}{13} \cdot \binom{13}{13}}{\binom{13}{13} \cdot \binom{12}{13} \cdot \binom{13}{13}} - 1 \quad \delta^{13} \text{ is } {}^{13}\text{C content of sample relative to a standard}$$

Two equations in two unknowns (GPP & R_{eco})

Requires:

(1) δ^{13}_{NEE} to be measureable

$$NEE = \underline{GPP} + \underline{R}_{eco}$$

$$\delta_{NEE}^{13} NEE = \delta_{GPP}^{13} \underline{GPP} + \delta_{R}^{13} \underline{R}_{eco}$$

Via eddy flux

$$\delta_X^{13} = \frac{\binom{13}{13} \cdot \binom{12}{12} \cdot \binom{1}{X}}{\binom{13}{13} \cdot \binom{12}{12} \cdot \binom{1}{13}} = \frac{\delta^{13}}{13} \cdot \frac{13}{13} \cdot \frac{$$

Two equations in two unknowns (GPP & R_{eco})

Requires:

(1) δ^{13}_{NEE} to be measureable

(2) δ^{13}_{GPP} to be different from δ^{13}_{R}

We measure the isotopic composition of respiration at night (using Keeling plots)

$$\delta_X^{13} = \frac{\binom{13}{13} \cdot \binom{12}{13} \cdot \binom{13}{13}}{\binom{13}{13} \cdot \binom{12}{13} \cdot \binom{13}{13}} - 1$$
 \delta^{13} is \frac{13}{13} C content of sample relative to a standard

Two equations in two unknowns (GPP & R_{eco})

Requires:

- (1) δ^{13}_{NEE} to be measureable
- (2) δ^{13}_{GPP} to be different from δ^{13}_{R}

Approach – scaling leaf physiology to the canopy:

- (1) leaf-scale knowledge of physiology to constrain ecosystem-scale isoflux of GPP (depends on canopy-scale stomatal conductance)
 - → (Farquhar et al. 1982 theory for leaf-scale photosynthetic discrimination)
- (2) Diffusion laws and ecosystem heat and water fluxes to constrain canopy scale stomatal conductance -- now validated with flux measurements of carbonyl sulfide (OCS) (Wehr, Commane et al. 2017)

30 JUNE 2016 | VOL 534 | NATURE

30 JUNE 2016 | VOL 534

30 JUNE 2016 | VOL 534 | NATURE

WARNING! Forest Heterogeneity

Seen in nighttime NEE

WARNING! Forest Heterogeneity

Seen in nighttime NEE

30 JUNE 2016 | VOL 534 | NATURE

First detected ecosystem manifestation of the leaf-level 'Kok effect' – inhibition of respiration by light?

VOL. 3 (1949) BIOCHIMICA ET BIOPHYSICA ACTA 625

ON THE INTERRELATION OF RESPIRATION AND PHOTOSYNTHESIS
IN GREEN PLANTS

by

RDARK

Fig. 3. Chlorella, grown in Knop solution + 100 mg glucose per L, during 3 days. Exp. 26-2-48.

First detected ecosystem manifestation of the leaf-level 'Kok effect' – inhibition of respiration by light?

VOL. 3 (1949) BIOCHIMICA ET BIOPHYSICA ACTA 625

ON THE INTERRELATION OF RESPIRATION AND PHOTOSYNTHESIS IN GREEN PLANTS

by

B. KOK O₂ emission + 200 Net + 100 photosynthesis **Net Respiration** light Fig. 3. Chlorella, grown in Knop solution + 100 mg glucose per L, during 3 days. Exp. 26-2-48.

First detected ecosystem manifestation of the leaf-level 'Kok effect' - 3 inhibition of respiration by light?

VOL. 3 (1949) BIOCHIMICA ET BIOPHYSICA ACTA 625

ON THE INTERRELATION OF RESPIRATION AND PHOTOSYNTHESIS

graph is getting out of the slide Flavia Costa,

RESULT 2: Seasonal pattern

Implications for Light-Use Efficiency (LUE) and Water Use Efficiency (WUE)

LUE important for estimating GPP from remote sensing:

 $GPP = PAR \cdot fAPAR \cdot LUE$

→ LUE = GPP / (APAR) (derived at eddy sites)

WUE important indicator of future C-water coupling:

 $WUE_{intrinsic} = (GPP / Transp) \cdot \Delta w = GPP / G_s$

(adjusted for water vapor deficit)

Important controversy about WUE trends (expected to increase with rising CO2):

+2.7%/yr (eddy flux network) vs +0.5%/yr (tree ring isotopes) (Keenan et al. 2013) (Frank et al. 2015)

→ and atmospheric 13C? (Keeling... Sing, et al. 2017)

Absorbed Photosynthetically Active Radiation (APAR) (uE m⁻² s⁻¹)

HF RESULT 2: Seasonal pattern

Isotopic LUE
better anticorrelated
with APAR

Isotopic WUE better anticorrelated with g_s

Can we support or falsify GPP derivations (isotopic or conventional) with OCS or SIF?

At Harvard Forest, Not yet! – broadly follows both GPPs, can't distinguish between them

Can we support or falsify GPP derivations (isotopic or conventional) with OCS or SIF?

NEEDED: Gs (OCS) → → Photochemistry (SIF)
→ GPP

(A GPP model integrating front end (OCS) and back-end (SIF) constraints)

(Wehr, Commane et al. 2017)

Application: allows transpiration-Evaporation partitioning via OCS flux measurements

Summary of What is GPP?

- 1. Light inhibition of **daytime Respiration** (R_{eco}) in leaves has ecosystem consequences.
 - (Apparently this is the first direct ecosystem-level detection of the leaf-level Kok effect)
- 2. This could make a big difference: Standard methods overestimate GPP by 25%, and overestimate daytime respiration (R_{eco}) by 100% at Harvard Forest. Does this also apply at hundreds of eddy flux sites around the world?
- 3. OCS a very good tracer of Gs, but Gs is not GPP.
- → Let's use Gs(OCS) in a 'better' model incorporating tracers of different parts of the photosynthetic process.