ECOSYSTEM-scale PROBLEM: What is GPP?

Standard Solution (Reichstein et al., 2005): EDDY COVARIANCE FROM FLUX TOWERS OBSERVES

(1) DER = nighttime NEE regressed vs. NET ECOSYSTEM-ATMOSPHERE CO, EXCHANGE (NEE)
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ECOSYSTEM-scale PROBLEM: What is GPP?

Standard Solution (Reichstein et al., 2005): EDDY COVARIANCE FROM FLUX TOWERS OBSERVES

(1) DER = nighttime NEE regressed vs. NET ECOSYSTEM-ATMOSPHERE CO, EXCHANGE (NEE)
Temperature (& extrapolated today)  we want photosynthesis (Gross primary production,
(for ~1-2 week moving window) or GPP) and Daytime Ecosystem Respiration (DER)
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ECOSYSTEM-scale PROBLEM: What is GPP?

EDDY COVARIANCE FROM FLUX TOWERS OBSERVES
NET ECOSYSTEM-ATMOSPHERE CO, EXCHANGE (NEE)

We want photosynthesis (Gross primary production,
or GPP) and Daytime Ecosystem Respiration (DER)

Standard Solution (Reichstein et al., 2005):
(1) DER = nighttime NEE regressed vs.
Temperature (& extrapolated to day)
(for ~1-2 week moving window)
(2) GPP = NEE — DER (residual)
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Alternative

. Isotopic Scaling/Partitioning

One equations in two
unknowns (GPP & R__)

eco

Key: we need a
second equation

NEE =GPP+R__




Alternative: Isotopic Scaling/Partitioning

Two equations in two

unknowns (GPP &R...)  NJEE — GPP+R
eco

Key: Adding

this second 11\131)3ENEE= (l}?;)PGPP 51}331&&&0.

equation: L o I |
| | |
Flux-weighted . L
: Net flux photosynthetic  Respiration
Isotopic
flux flux

composition of:

(13C/12c)
_ X
x = (13C/‘2C) —1 8135 13C content of sample relative to a standard

ref

13




Alternative: Isotopic Scaling/Partitioning

Two equations in two

unknowns (GPP &R...)  NJEE — GPP+R
eco

Key: Adding 13 13 13
this second NEENEE — GPPGPP 5R R
equation:

works by solving for GPP and DER (R,_, during the day),
given distinct stable isotopic signatures, 613

Yakir & Wang 1996, Bowling et al. 2001, ...
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Alternative: Isotopic Scaling/Partitioning

Two equations in two
unknowns (GPP &R__)

Requires: - NEE — GPP + R
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Alternative: Isotopic Scaling/Partitioning

Two equations in two
unknowns (GPP &R__)

Requires: NEE =GPP+R__

(1) 613, to be

measureable D
(2) 6%%pp to be NEENEE GPP GPP eco
different from 613,

Via eddy flux ﬂa nighttime

We measure the isotopic composition of respiration at night (using
Keeling plots)

13C/12c)
3 ( X
X = (13C/‘2C) ~1 §13 5 13C content of sample relative to a standard

ref




Alternative: Isotopic Scaling/Partitioning

Two equations in two
unknowns (GPP &R__)

Requires: - NEE — GPP + R

(1) 613, to be

measureable

(2) 6%3pp to be NEENEE :‘}P;P‘GCO
different from 613,

Via eddy qux Via nighttime

Approach — scaling leaf physiology to the canopy:

(1) leaf-scale knowledge of physiology to constrain ecosystem-scale iso-

flux of GPP (depends on canopy-scale stomatal conductance)
— (Farquhar et al. 1982 theory for leaf-scale photosynthetic discrimination)

(2) Diffusion laws and ecosystem heat and water fluxes to constrain
canopy scale stomatal conductance -- — now validated with flux
measurements of carbonyl sulfide (OCS) (Wehr, Commane et al. 2017)




KEY RESULT: suppression of DER in light (& lower GPP)
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KEY RESULT: suppression of DER in light (& lower GPP)
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WARNING! Forest Heterogeneity

Seen in nighttime NEE
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WARNING! Forest Heterogeneity

Seen in nighttime NEE
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KEY RESULT: suppression of DER in light (& lower GPP)
NEE
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First detected ecosystem manifestation of the leaf-level ‘Kok effect’ —
inhibition of respiration by light?

voL. 3 (194Q) BIOCHIMICA ET BIOPHYSICA ACTA 625

ON THE INTERRELATION OF RESPIRATION AND PHOTOSYNTHESIS
IN GREEN PLANTS

by

B. KOK

O, emission

Fig. 3. Chlorella, grown in Knop solution 4 100 mg glucose
per L, during 3 days. Exp. 26-2-48.
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First detected ecosystem manifestation of the leaf-level ‘Kok effect’ -3
inhibition of respiration by light?

VOL. 3 (1949) BIOCHIMICA ET BIOPHYSICA ACTA 625

ON THE INTERRELATION OF RESPIRATION AND PHOTOSYNTHESIS
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Fig. 3. Chlorella, grown in Knop solution 4 100 mg glucose
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RESULT 2: Seasonal pattern
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Implications for Light-Use Efficiency (LUE) and
Water Use Efficiency (WUE)

LUE important for estimating GPP from remote sensing:
GPP = PAR - fAPAR - LUE
- LUE = GPP / (APAR) (derived at eddy sites)

WUE important indicator of future C-water coupling:
WUE; = (GPP / Transp) - Aw = GPP /G,

intrinsic
(adjusted for water vapor deficit)

Important controversy about WUE trends (expected to
iIncrease with rising CO2):

+2.7%/yr (eddy flux network) vs +0.5%/yr (tree ring isotopes)

(Keenan et al. 2013) (Frank et al. 2015)
- and atmospheric 13C? (Keeling... Sing, et al. 2017)
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GPP (umol m2 s1)

HF RESULTS: Seasonal Patterns

35— 0 < VPD < 1,200 Pa
Southwest quadrant
30—
20— B /
s
s
s
20— ad
/
e
e
15— “
7 O
7 S
10— -
E
p)
S— Jun—Jul
Aug-Sep — —
O | | !
) 500 1,000 1,500

Absorbed Photosynthetically Active Radiation (APAR) (UE m2 s*1)



GPP (umol m2 s1)

HF RESULTS: Seasonal Patterns
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GPP (umol m2 s1)

HF RESULTS: Seasonal Patterns
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HF RESULT 2: Seasonal pattern
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GEP (umol m> 5_1)

Can we support or falsify GPP derivations
(isotopic or conventional) with OCS or SIF?
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Can we support or falsify GPP derivations
(isotopic or conventional) with OCS or SIF?
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Canopy scale conductance
via OCS flux measurements

stomatal

Simple model conductance
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Canopy scale conductance
via OCS flux measurements

stomatal

Simple model conductance
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Canopy scale conductance
via OCS flux measurements
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Canopy scale conductance
via OCS flux measurements
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Application: allows transpiration-Evaporation
partitioning via OCS flux measurements
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Summary of What is GPP?

1. Light inhibition of daytime Respiration (R, ) in leaves has
ecosystem consequences.

(Apparently this is the first direct ecosystem-level detection
of the leaf-level Kok effect)

2. This could make a big difference: Standard methods
overestimate GPP by 25%, and overestimate daytime
respiration (R, ) by 100% at Harvard Forest. Does this also
apply at hundreds of eddy flux sites around the world?

3. OCS a very good tracer of Gs, but Gs is not GPP.

- Let’s use Gs(OCS) in a ‘better’ model incorporating tracers of
different parts of the photosynthetic process.




