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Global CO; Levels

Atmospheric CO, at Mauna Loa Observatory

Scripps Institution of Oceanography
NOAA Earth System Research Laboratory
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CO2 Accumulation in the Atmosphere

Fossil Fuel Emissions of CO2 and Atmospheric Buildup, 1958-2008

® About |/2 of
fossil-fuel CO»
remains in the
atmosphere!

® Extremely
variable

I

Year
NASA/NOAA data




Global Carbon Cycle

About half the ’ Outdated Plot!
CO, released by .

humans is

absorbed by

oceans and land

~10 GtClyr
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Land and Ocean Sinks

® Most of the
Fossil Fuel Emissions of CO2 and Atmospheric Buildup, 1958-2008 Variabi“ty in the
sink is due to land

Where!

What causes the
inter-annual
changes!

What about the
Future!?
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Plants are Growing Faster
than they are Dying

CO» fertilization

Nitrogen fertilization

Woody encroachment

Season Lengthening

55.0 N U U
1850 1875 1900 1925 1950 1975 2000

Fire suppression

Year

Friedlingstein et al., 1995

Again, the Future?
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Quantification

* We are searching for a
O rlered ﬂ very small difference

humans is
absorbed by

s and an ' between large gross fluxes

~10 GtClyr

* [n models, this sink must
e o0 be emergent from model

physics
- Inversions
- A Priori models
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Models of
Photosynthesis

3 | Boreal North America
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7 Sas g ® Do our models
agree with respect
to global/
continental scale
photosynthesis!?
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Types of Models

® “Light Response”

® Simple, statistical models
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® Few Parameters

® Multiple mechanisms
combined into single eqns

photosynthesis

Light Amount
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® “Enzyme Kinetic”
® More complex

® Explicit
representation of
physical processes

® Many parameters
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“All Models Are Wrong,
Some Models Are Useful”

® How can we use SIF and OCS observations
to constrain our models?




Vegetation Type

® OCS Studies

= First model
(Berry)

= Harvard Forest
MA, USA
(Commane)

- Hyytiala, Finland
(Kooijmans)

7 8 9 10 1:1 2 13 14 15 16 17 18 - North America
(lowa) (Chen)

Monday, September 18, 17



The OCS Model: Berry
et al., 2013

BERRY ET AL.: CARBONYL SULFIDE AS A GLOBAL CARBON CYCLE TRACER ‘ E . *
, quations in
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Figure 2. Resistance analog model of CO; and COS uptake. Numbers in parentheses are conductance An aI O O u S to
values (molm *s~') corresponding to the numbered key: (1) Boundary layer conductance, g,. g
(2) Stomatal conductance, g,. (3) Mesophyll conductance, g;. (4) Biochemical rate constant used approxi

mate photosynthetic CO, uptake by Rubisco or the reaction of COS with carbonic anhydrase as a linear

function of c_. In this case, COS uptake is 12.6 pmol m s~ ' and that of CO, is 5.6 umol m *s ™" 2
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The OCS Model: Berry
et al., 2013

Table 1. A Compilation of the Global Sources and Sinks Used for Th 'F
PCTM Simulations of Atmospheric COS® c Tl rSt

SDUYCCS K(’”A"L' el s’ll'.. 2002 .l.h‘lS Stud_\ S i m u Iati O n S Sai d
Direct COS Flux From Oceans . 39
Indirect COS Flux as DMS From Oceans ' 81 h b
Indirect COS Flux as CS, From Oceans 156 t e re m u St e a
Direct Anthropogenic Flux 64

Indirect Anthropogenic Flux From CS. 116 m u C h I a r‘ge r' O C S

Indirect Anthropogenic Flux From DMS 0.5
Biomass Burning : .
Additional (Photochemical) Ocean Flux SO U rce I n th e
Sinks .
Destruction by OH Radical 4 trop|ca| oceans to

Uptake by Canopy

Uptake by Soil 130
Net Tota : balance plant and
‘Units are 1.0 x 10" g of sulfur. Fluxes changed in this study are SOiI Uptal(e

highlighted with bold type.
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Kuai et al.,, 2014

PR ... Ocean
OCS flux

Inversion model

The ocean
source Is
right where
Joe said it
would be!

Aircraft Observations
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Site-Level Studies-Hyytiala, Finland

Pine Forest

NEW run

Model CO; flux
too small!

Fluxes: CO; and
OCS moving
- past a sensor

10 15

Model OCS flux Four of day

too small!

But LRU looks good!

LRU= Leaf Relative Uptake = OCS flux / CO; flux

Observations from L. Kooijmans, U Groningen
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Site-Level Studies-Harvard Forest

* Monthly Signal
looks good
(mostly) (A)
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* Not enough
uptake at night

(B)

Commane et al., 2015
e OCS source!?
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Large-Scale Inversions

West Branch, lowa, United States [41 43'N, 91 21'W, 241 masl]
ata

surface-pfp, NOAA Global Monitoring Division, United States C O n C e ntrati O n S: a m O u nt Of

OCS or CO3 in the air

Prior (\=1) Measurements taken in lowa

* Too much OCS uptake (top)

CO2 data west Branch, lowa, United States [41°43'N, 91°21'W, 241 masl]
surface-pfp, NOAA Global Monitoring Division, United States

* ‘Prior’ CO; looks good
(bottom)

e OCS efflux from agricultural
Prior (\=1) | soils? What about Harvard!?

Feb 2010 Dec 2010
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Vegetation Type

® S|F Studies
= Sahel

- Tropical
South

America
(Goldilocks)
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Sahel

® Extremely seasonal

® Poorly observed
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® Politically unstable

Jul Oct

—— Monthly Mean RADIATION

&#-4 Monthly Mean TEMPERATURE
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Sahel: Obs SIF vs Model
Photosynthesis

0900-1100 local
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® Month indicated by
number
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® 6 years of data
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® ‘Greens up’ in rainy
season

o
3

=
=
7&-
7
=
n
(44]
o
®
Q
c
@
Q
7
D
p—
o
=
TS

o
(=)

0 5 10 15 20 25 30
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MA-Ma1 r'= 0.844 y= -0.037 + 0.087 X
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Sahel: Obs SIF vs Model SIF

0900-1100 local ® |:]| line would be
‘ o perfect
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® Model does not
capture start of
season
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® Model does not have
large enough SIF
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MA-Ma1 r'= 0.698 y= -0.514 + 1748 X

Monday, September 18, 17



Leaf Area

Mali, Agoufou Grass Site Year=2011
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® The LEAF AREA used in the model is very
low

® Very little response to seasonality
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Leaf Area

Mali, Agoufou Grass Site Year=2011

Leaf Area Index

Jan Jun Dec

® We expect a rapid GREEN UP following the onset
of seasonal rains

® QObservations support this
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New Model of Phenology (leaves)

Averaged SIF vs Binned Soil Moisture

e®¢ SIiB
mEBg SMAP & OCO-2

® Rapid rise in
MODEL SIF
when soil
starts to
moisten

0.10 0.15 0.20 0.25 0.30 0.35
Surface (0-5 ¢cm) Soil Moisture (cm”™3/cm”™3)

Katherine Haynes and Dakota Smith
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Amazon Basin

Annual Rainfall, meters  # months rainfall < [00mm

GPCP rainfall data
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Amazon Basin

TEM /neutralyrs 88
IBIS \ (1980-95)
Data (7/00-7/02) = -

neutral yrs, 1980-9
Site (7/00-7/02)
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Feb Apr May Jun Jul

Month

Mode! output is mean of 4 gridpoints: -5
Data i3 from Tapaos, kmi 7 site (2.85 5, 55 W, from 10-A )

Saleska et al., 2003

OBSERVATIONS:
carbon into the
ecosystem during the
dry season, into the
atmosphere during
rainy season

MODELS: the exact
opposite
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Amazon Basin

BAKER ET AL.: TAPAJOS km 83 NEE ANNUAL CYCLE

Tapajos km83 Observations PRl S
— — . SiB BASE CODE Rl \

SiB3 Model

® Our model had opposite
seasonality too
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mean precip (cm) Carbon Flux g/m?
0
o

Baker et al., 2008
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Amazon Basin

® We fixed our carbon
flux problem!

- Deeper Soil
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> roots
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® T[hen we ran the
model for the entire
region
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® How did the model
respond to the 2010
drought!?

Baker et al., 2008
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Amazon Basin-2010 drought

® Droughts in 2005
(no SIF) and 2010

® 2010 drought
most extreme in

Southern Amazon

droughts of the 21st century in Amazonia. (C and D) The difference in the 12-month (October to Septemb® Bas I n
MCWD from the decadal mean (excluding 2005 and 2010), a measure of drought intensity that correlate
with tree mortality. (A) and (Q) show the 2005 drought; (B) and (D) show the 2010 drought.

Lewis et al., 201 |

Water Deficit
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Amazon Basin-2010 drought

® September 2010 SIF
subtracted from
September 2009

Can see the 2010
Drought in GOME-2
SIF

Significant reduction in
SIF in southern part of
the Amazon Basin
Forest

Drought as recorded by GOME-2 SIF
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Amazon Basin-2010 drought

-

® No sign of
drought in our
model SIF

® We appear to
have made our
model too
drought-resilient

This is where we should see the drought
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Conclusion

® Carbon cycle models are important for:
- Evaluating current ecosystem behavior
- Predicting the future of the CO; sink

® OCS and SIF allow us to observe nature in new ways, use that
information to evaluate our models

® There is no ‘silver bullet’ that will answer all our questions;
progress is incremental

® Frequently, the results are unexpected
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