What carbonyl sulfide teaches us
about Earth's biosphere

Elliott Campbell
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Presenter
Presentation Notes
Dominant global sources: tropical oceans, Asian industry
Dominant global sink: terrestrial plants in a process 
Other sources/sinks can be large locally (e.g. soils, biomass buring…) but are relatively small at a regional/global scale
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Carbonyl Sulfide (COS or OCS)
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Dominant global sink: terrestrial plants in a process 
Other sources/sinks can be large locally (e.g. soils, biomass buring…) but are relatively small at a regional/global scale
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Presenter
Presentation Notes
Atmospheric mixing ratios of COS and CO2 are made from the NOAA surface network (left) and NASA airborne campaigns (right).  The signal in both cases is much larger for COS than CO2 because continental surface fluxes of COS are dominated by plant COS uptake but for CO2 the plant CO2 uptake is offset by the soil CO2 emission.
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Remote Sensing
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Presentation Notes
Satellite provide global maps of upper troposphere (~12km) mixing ratios of CO2 (left) and COS (right).  These maps show that over the Amazon there is a large reduction in COS but only limited drawdown of CO2.  The difference occurs because the Amazon is a large sink for COS due to the dominant of plant COS uptake but for CO2 the plant CO2 uptake is offset by the soil CO2 emission.
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Assessing a New Clue to How Much

Carbon Plants Take Up

Current climate models disagree on how much carbon dioxide land
ecosystems take up for photosynthesis. Tracking the stronger carbonyl

sulfide signal could help.
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3. Northern Extratropics:
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o2 : relatively little
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Presentation Notes
CO2, ocean is a reservoir of CO2 and the buffering capacity of the ocean causes atmospheric CO2 to repsond slowly to changes in terrestrial co2 sources/sinks.  However, unlike CO2, the ocean is not a reservoir of COS and there is little buffering of COS by storage in the ocean or biosphere.  Hence, unlike CO2, the COS concentration responds rapidly to changes in the balance of its sources and sinks.  
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(Hilton et al., Nature Climate Change, 2017)
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Presentation Notes
Top: Maps in top row show 3 alternative scenarios for the spatial distribution of GPP

Bottom:  We use these three alternative scenarios for GPP to model 3 alternative scenarios for atmospheric COS concentrations.  We then compare these three model COS scenarios to airborne COS data.  

The north 
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Top: Maps in top row show 3 alternative scenarios for the spatial distribution of GPP

Bottom:  We use these three alternative scenarios for GPP to model 3 alternative scenarios for atmospheric COS concentrations.  We then compare these three model COS scenarios to airborne COS data.  
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3) COS Applicatic
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a) Current Budget
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MSE samples from MCMGC simulation
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COS Model Error (ppt)
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Presentation Notes
Top: GPP is thought to have grown historically (due to co2 fertilizaiton, warming, etc.) but global ecosystem models disagree on how much GPP growth has occurred.

Bottom: We used these alternative GPP scenarios as the input to simulations of atmospheric COS to create alteratnive scenarios of atmosopheric COS.  We evaluated these COS models against Antarctic COS measurements in firn and ice (measurements made by Steve Montzka – NOAA, Murat Ayudin / Eric Saltman UC Irvine).  We found that the COS models with the best performance had the highest historical GPP growth rates.
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Presentation Notes
Fertilization impact is important, but it’s a part of a larger issue. If sequestration / plant uptake stalls, 
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Continental Drawdown
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Leaf Chamber Observations
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Regional Analysis
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More Leaf Chamber Observations
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Eddy Flux Observations
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Terrestrial Climate Feedbacks
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Mixed Results
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Photosynthesis in Carbon-Climate Models
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Large-Scale Variability
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New era for COS

First eddy flux (Maseyk et al., PNAS, 2014)

First global satellite maps (Kuai et al., JGR,
2015; Glatthor et al., GRL, 2015)

First obs of glacial transition (Aydin et al., JGR,
2016)

Anthropogenic inventory (Campbell et al.,
GRL, 2015)

Soil incubations (Whelan et al., ACP, 2016)

Column spectrometer (Wang et al., ACP, 2016)
NOAA network (Montzka et al., JGR, 2007)



Global Budget

Table 1. A Compilation of the Global Sources and Sinks Used for
PCTM Simulations of Atmospheric COS®

Sources Kettle et al., 2002  This Study

Direct COS Flux From Oceans

Indirect COS Flux as DMS From Oceans
Indirect COS Flux as CS5, From Oceans
Direct Anthropogenic Flux

Indirect Anthropogenic Flux From CS,
Indirect Anthropogenic Flux From DMS
Biomass Burning

Additional (Photochemical) Ocean Flux

Sinks
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Destruction by OH Radical
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Uptake by Soil

Net Total
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*“Units are 1.0 x 10° g of sulfur. Fluxes changed in this study are
highlighted with bold type.

(Berry et al., JGR-Biogeosciences, 2013)



Leaf Uptake of COS and CO,
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(Berry et al., JGR Biogeosciences, 2013)
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