Airship Platform for Long-Wavelength Astrophysics

Paul Goldsmith

Chief Technologist, Astronomy, Physics, & Space Technology Directorate Jet Propulsion Laboratory California Institute of Technology

BENEFITS OF HIGH ALTITUDE (≥ 60,000 ft) AIRSHIP PLATFORM FOR SUBMILLIMETER ASTRONOMY

REDUCED ATMOSPHERIC ABSORPTION

- Improved transmission in so-called airplane windows
- Access to frequencies that are largely opaque at aircraft altitudes
- Significant reduction in atmospheric noise
- Major reduction in system temperatures for heterodyne systems

INCREASED OBSERVING TIME

• Large-scale surveys are enabled

FLEXIBLE LOCATION

• Possible access to ALL of the Galactic Plane (and all of the sky!)

LINE OF SIGHT COMMUNICATION

 Data rate for balllons drifting around the Earth is a real problem: 60 kbps via TDRSS; also expensive

GUSSTO: Proposed ULDB Mission with 16-pixel Focal Plane Arrays for [NII],[CII], and [OI]; 1' Angular Resolution; Observing 23 hr/day

Even with such arrays, LARGE-SCALE GALACTIC PLANE SURVEYS ARE VERY TIME-CONSUMING

Galactic Plane Survey (GPS) Survey $-25^{\circ} < l < 25^{\circ} - 1^{\circ} < b < 1^{\circ}$ extended to $-2.2^{\circ} < b < c$

+2.2° for ||| < 2° [> 2 million Nyquist-sampled spectra; **39 days**]

[CII] Measure N(H)= 10^{21} cm⁻² in the Galaxy and $2x10^{21}$ cm⁻² in the LMC, equiv. to a 3σ detectability of $1x10^{-5}$ erg/s/cm2/sr in the Galaxy and half this in LMC for $\delta v = 4$ km/s

[NII] Measure ionized gas emission measures of >50 pc cm⁻⁶, corresponding to a 3 σ detectability of 8x10⁻⁶ erg/s/cm2/sr for $\delta v = 8$ km/s

[OI] Measure column densities in dense gas of $N_{H}=2x1021 \text{ cm}^{-2}$, corresponding to a 3 σ detectability of $1x10^{-4} \text{ erg/s/cm}^2/\text{sr}$ for $\delta v = 4 \text{ km/s}$

Large Magellanic Cloud Survey (LMCS) Survey 7° x 7.5° region covering all of the LMC [> 700,000 Nyquist-sampled spectra; **27 days**]

Targeted Deep Surveys (TDS) Survey selected 1° x 1° regions of MW and LMC Measure [OI] at full sptial resolution and [¹³CII] [5 x 14000 Nyq.-sampled spectra; **20 days**]

Key FIR Fine Structure Lines for Probing the Life Cycle of the ISM & Star Formation

Effect of Atmosphere on Individual Spectral Line Observability

OI ${}^{3}P_{0} - {}^{3}P_{1}$ Line

f = 2060.068 GHz Λ = 145.53 μm

Not a major cooling line but a potentially valuable diagnostic of PDRs in conjunction with 63 μ m ${}^{3}P_{1} - {}^{3}P_{2}$ line

Located on O_3 line! But may be possible to observe albeit with significant penalty

M51 (z = 0.00154) is observable

Effect of Atmosphere on Individual Spectral Line Observability

OI ${}^{3}P_{0} - {}^{3}P_{1}$ Line

f = 2060.068 GHz Λ = 145.53 μm

Not a major cooling line but a potentially valuable diagnostic of PDRs in conjunction with 63 μ m ${}^{3}P_{1} - {}^{3}P_{2}$ line

Airship altitude is not going to help this much for Millky Way but required redshift to become observable is slightly reduced and redshift range is enlarged

Observability of [OI] 63 µm Line is Severely Limited by the Atmosphere

- This is second most important cooling line for ISM and its importance relative to [CII] is of great interest currently
- Observations of Milky Way are hampered by significant attenuation
- This plot is for ZA = 0 deg which is not typical (especially for SOFIA)
- The atmosphere gets much worse at even modestly redshifted velocities
- No observability at all up to several thousand km/s

Thanks to Steve Lord and ATRAN pgm

High Spectral Resolution Enables Observation of [¹³CII] and Correction for Saturation

Graf et al. (2012) using GREAT instrument on SOFIA

UV-irradiated neutral gas Complex kinematics \rightarrow line profiles.

[CII] 1900 GHz Herschel HIFI 9 hr beam=11.6"

M51

CO J =1-0 4" Resolution (Koda et al. 2009)

Atmospheric Transmission near [CII] h = 40,000 ft pwv = 8.4 μ ZA = 0°

Atmospheric Transmission near [CII] h = 60,000 ft pwv = 1.4μ ZA = 0°

HeH⁺ @2010.187 GHz (λ = 149.136 μm)

- This molecular ion is primarily of cosmological interest – it could be one of the first molecules in the universe
- Not yet convincingly detected in a Milky Way HII region, although attempts have been made (ISO)
- At SOFIA altitude an ozone line makes observations within the Milky Way very difficult if not impossible. M31, M33, M33 all doable

Havelength in Microns

HeH⁺ Lowest Rotational Transition at 2010.187 GHz $(\lambda = 149.136 \ \mu m)$

- This molecular ion is primarily of cosmological interest – it could be one of the first molecules in the universe
- Not yet convincingly detected in a Milky Way HII region, although attempts have been made (ISO)
- Airship altitude offers only small advantage: transmission for modest red- and blueshifts is nearly unity
- Requires space for relatively unhindered access

A Notional FIR Airship Observatory

- 10m diameter CFRP antenna
 - Minimum wavelength = 60 μ m
 - Smallest beam size = 1"
 - Pointing will be a challenge: need star tracker
 - Equip with large heterodyne focal plane arrays for high resolution spectroscopy AND/OR
 - Equip with continuum cameras AND/OR
 - Equip with polarimeter
- Could obviously be reduced size
- Need serious study of capability of Airship in terms of lifting capacity, stability, pointing, power available

Off-Axis 1m CFRP Telescope (GUSSTO Balloon) Star-Trackers

Long-Wavelength Astrophysics Benfiting from Airship Platform

- Spectral Line Surveys
 - Partially blocked lines observable and significantly higher sensitivity available
- Continuum Surveys
 - less dramatic improvement since wavelength relatively flexible; high-Galactic latitude surveys
- CMB Observations
 - Large sky coverage at high (?) resolution
- Polarimetry
 - Time-consuming from ground and could be significantly improved from airship