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Monitoring biodiversity and how it is changing is 
critical to sustaining Planet Earth for humanity



Biodiversity crisis

We are witness to the greatest loss of 
biodiversity in the last 65 million years
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climatic conditions. Species that actively thermo-
regulate may be able to select microhabitats that
are buffered from extreme conditions (20, 37),
though this can also restrict activity, which may
lead to local extinction (38). This aspect of re-
sponse to climate change has not been studied
sufficiently and warrants greater attention. Dis-
persal to track geographic shifts in climate is
clearly the dominant response measured from
paleontological and 20th-century records (see
below). The scale of dispersal required is a func-
tion of both the regional magnitude of climate
change and topography, combined with the spe-
cies sensitivity (23).

Predicted Impacts of Future Climate Change
Forecasts of potential species responses to future
climate change come in two varieties: (i) cor-
relative or mechanistic models of individual spe-
cies (39) or (ii) prediction of higher-level properties
such as species richness (3) or turnover (40).
Correlative models are currently the most wide-
spread and scalable method (41), but they have
inherent limits. These models typically apply some
form of climate envelope approach, assessing
whether the (realized) climate niche occupied by
a species continues to exist within the current
geographic range and whether it will shift else-
where or cease to exist. This approach has often
been criticized for lacking a direct mechanistic
basis and the inherent danger of extrapolation (9).
Additionally, these models are generally com-
puted at a coarse spatial resolution and fail to
capture spatial variability in temperature over

tens to hundreds of meters, at which the buffering
role of microhabitat heterogeneity may be crucial
for species persistence (18, 42). Thus, correlative
models are probably a better measure of exposure
than of species vulnerability to climate change.

The actual predictions of effects on species
persistence are often dire, however. For example,
one prominent analysis predicted that 15 to 37%
of species would be endangered or extinct by
2050 (3). Another predicts more than a 50% loss
of climatic range by 2080 for some 57% of
widespread species of plants and 34% of animals
(4). Montane taxa are expected to lose range area

as they shift upward with warming. Again, pre-
dicted effects are catastrophic (43–45) and could
be even worse for the highly endemic biotas of
tropical montane forests if the cloud base lifts
(46). For the tropical lowlands, high levels of
species attrition are predicted because of narrower
physiological tolerances (47) and a high velocity of
change due to shallow temperature gradients (48).
Reduction of species ranges is expected to result in
substantial loss of geographically structured genetic
variation, perhaps including cryptic taxa (49, 50).
Yet, we must acknowledge the level of uncertainty
of these predictions and the possibility that these
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Fig. 1. Global mean temperate fluctuations and scales of inference
across the historical record and future predictions. The paleoclimate
record is modified from http://commons.wikimedia.org/wiki/File:All_palaeotemps.
png, data for the 20th-century record were obtained from http://data.giss.
nasa.gov/gistemp/graphs_v3/, and forecasts of future change are adapted

from (107), figure SPM.5 (different colors represent predictions under dif-
ferent models). Note the differences in scale on the x axis and that forecasts
under higher-emission scenarios exceed the natural variability observed over
the historical record. DT, change in temperature; Yrs BP, years before the
present.
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Fig. 2. Factors affecting species vulnerability to climate change. (A) Schematic of the pathway
from exposure to broad-scale climate change to species vulnerability [see (1, 2) for analogous
representations]. (B) Limits to evolutionary rescue imposed by trait heritability, the intrinsic rate of
population growth, and the rate of change in the environment (e.g., temperature). This schematic is
modified from (36) and is based on theoretical models in (29).
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Future climate will depart from previous 
climates of the last 5 MYR



Fire	and climate	change	threats



Disease threats
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Data gap: most species are left 
unmeasured and unmonitored

NCEAS“Observ
ing Biodiversity 
from Space,” 
Jetz et al 2016
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We know a lot about a small number of 
species and very little about most



Human needs are often not met in regions where 
biodiversity is highest, creating conflicting goals

uses that contribute immediately and directly to human wel-
fare, such as agricultural production (Foley et al., 2011). These
are entangled with issues of equity by the fact that the world’s
biodiversity hotspots tend to be found in countries with the
highest human population density and the lowest per capita
income (Figure 2). These same countries, mostly in the tro-
pics, have seen much of their best agricultural land committed
to the production of sugar, tea, coffee, chocolate, and other
luxury goods for temperate-zone markets for centuries, and
increasingly to meet rising global demand for soya and palm
oil in biodiversity hotspots such as Indonesia and Amazonia.
Ultimately, the possible paths toward sustainability are con-
strained by the realities of the history and geography of
human society and Earth’s biodiversity.

The complexities of relationships among biodiversity and
human well-being present fundamental challenges to defining
the objectives of a sustainable future; thus a transition toward
sustainability must be a search rather than a march. Regardless

of the specific path, a transition toward sustainability – in
which biodiversity and the ecosystem services they provide are
sustained and human needs met now and in the future – will
require significant social, political, and technological changes
during the next few generations. The good news is that this is a
time period in which human population is expected to level
off within the century due to declining fertility rates
(Figure 1(d)); hence, it is possible to think of a sustainability
transition on the timescale of the demographic transition
drawing to a close during the twenty-first century. At the same
time, even present levels of human population and con-
sumption have proven devastating to the planet’s biota.
Understanding how past and future biodiversity loss influence
the ecosystem and environmental services that contribute to
human welfare is critical to the search for a sustainable future.
Awareness of long-term trends and transitions, together with
indicators to inform our searches, are important contributions
that science can provide in addition to developing means for
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Figure 2 Bird diversity (a, b), vascular plant diversity (c, d), and mammal diversity (e, f) by country in relation to population density (people per
km2) and Gross National Income (GNI; $US), respectively. GNI is the value of all products and services generated within a country in one year
(GDP) plus the income lost to or gained from other countries through debt and interest payments. The relationships show that species diversity,
one measure of biodiversity, is highest in countries where population density is highest and income is lowest, posing challenges for biodiversity
conservation. In a–f, each point represents a single country. Lines are least squares regressions fitted to the data. Species per km2 are calculated
from the number of species per country divided by the total area of the country. Data on bird, mammal and plant diversity are from the World
Resources Institution (earthtrends.wri.org); population density and GNI data are from the World Bank.
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that exist between biodiversity and poverty, and evaluate them
integratively at local, regional, and global scales. Social and
economic equity arises as a cross-cutting issue, shaping the
trajectories of human–environment interactions and thus
affecting sustainability.

At global, continental, and many national levels, trends
indicate increases in average standards of human well-being
despite declines in biodiversity (MEA, 2005). This would
suggest that biodiversity conservation is not relevant to, or not
necessary for, human development. However, such aggregated
scales blur the fact that national average indicators of well-
being can increase whereas the economic welfare of the
poorest is stagnant or decreasing. Furthermore, when we focus
on regions with extreme poverty, these areas are frequently
regions of the greatest rates of biodiversity loss. Numerous
factors contribute to this troubling co-occurrence.

Such regions are most commonly located in the tropics
and in developing countries, where people often engage in
traditional subsistence or small-scale production systems.
These segments of society tend to rely heavily on local bio-
diversity to meet an array of their livelihood needs – food,
fiber, fuel, construction materials, medicine, pollination

services, cultural services, etc. Also, these societies also tend to
have high levels of multiple indicators of poverty, such as little
wage employment or cash income, poor access to education,
health, and social services, and political marginalization
(Figure 3). This leads to a spatial correlation of biodiverse
areas and poverty.

A major driver of biodiversity loss globally is demand and
consumption of natural resources from urban areas and from
the developed or rapidly developing world (DeFries et al.,
2010). Urban populations have continued to increase in all
parts of the globe over the last century (Figure 1(c)) with in-
creases in consumption that put pressure on agriculture and the
natural resource bases at the expense of biodiversity. The loss of
biodiversity in poor rural areas of developing countries occurs
as local residents and governments are driven by such demands
to exploit their natural capital to increase national economic
growth. Natural resource extraction and land conversion – such
as timber extraction, mineral extraction, expansion of agri-
culture or aquaculture, and urban growth – are often under-
taken in environmentally irresponsible ways, due to some
combination of weak governance, perverse incentives, and
economic desperation. Whether out of economic necessity,
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Figure 3 Indicators of human well-being and consumption rates are associated with monetary wealth. Wealthier nations have higher access to
safe drinking water (a), lower child mortality rates (b), lower fractions of their populations undernourished (c), and lower rates of tuberculosis
(d), an indication of disease risk. Wealthier nations also have lower fertility rates (e) and higher life expectancy (f), and higher literacy rates (g),
an indication of demographic transitions. At the same time, consumption rates of energy (per capita) (h) and emissions of CO2 (i) increase with
wealth, indicating that gains in well-being come at a cost for the global environment. Data from the World Bank.
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that exist between biodiversity and poverty, and evaluate them
integratively at local, regional, and global scales. Social and
economic equity arises as a cross-cutting issue, shaping the
trajectories of human–environment interactions and thus
affecting sustainability.

At global, continental, and many national levels, trends
indicate increases in average standards of human well-being
despite declines in biodiversity (MEA, 2005). This would
suggest that biodiversity conservation is not relevant to, or not
necessary for, human development. However, such aggregated
scales blur the fact that national average indicators of well-
being can increase whereas the economic welfare of the
poorest is stagnant or decreasing. Furthermore, when we focus
on regions with extreme poverty, these areas are frequently
regions of the greatest rates of biodiversity loss. Numerous
factors contribute to this troubling co-occurrence.

Such regions are most commonly located in the tropics
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These segments of society tend to rely heavily on local bio-
diversity to meet an array of their livelihood needs – food,
fiber, fuel, construction materials, medicine, pollination

services, cultural services, etc. Also, these societies also tend to
have high levels of multiple indicators of poverty, such as little
wage employment or cash income, poor access to education,
health, and social services, and political marginalization
(Figure 3). This leads to a spatial correlation of biodiverse
areas and poverty.

A major driver of biodiversity loss globally is demand and
consumption of natural resources from urban areas and from
the developed or rapidly developing world (DeFries et al.,
2010). Urban populations have continued to increase in all
parts of the globe over the last century (Figure 1(c)) with in-
creases in consumption that put pressure on agriculture and the
natural resource bases at the expense of biodiversity. The loss of
biodiversity in poor rural areas of developing countries occurs
as local residents and governments are driven by such demands
to exploit their natural capital to increase national economic
growth. Natural resource extraction and land conversion – such
as timber extraction, mineral extraction, expansion of agri-
culture or aquaculture, and urban growth – are often under-
taken in environmentally irresponsible ways, due to some
combination of weak governance, perverse incentives, and
economic desperation. Whether out of economic necessity,
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that exist between biodiversity and poverty, and evaluate them
integratively at local, regional, and global scales. Social and
economic equity arises as a cross-cutting issue, shaping the
trajectories of human–environment interactions and thus
affecting sustainability.

At global, continental, and many national levels, trends
indicate increases in average standards of human well-being
despite declines in biodiversity (MEA, 2005). This would
suggest that biodiversity conservation is not relevant to, or not
necessary for, human development. However, such aggregated
scales blur the fact that national average indicators of well-
being can increase whereas the economic welfare of the
poorest is stagnant or decreasing. Furthermore, when we focus
on regions with extreme poverty, these areas are frequently
regions of the greatest rates of biodiversity loss. Numerous
factors contribute to this troubling co-occurrence.

Such regions are most commonly located in the tropics
and in developing countries, where people often engage in
traditional subsistence or small-scale production systems.
These segments of society tend to rely heavily on local bio-
diversity to meet an array of their livelihood needs – food,
fiber, fuel, construction materials, medicine, pollination

services, cultural services, etc. Also, these societies also tend to
have high levels of multiple indicators of poverty, such as little
wage employment or cash income, poor access to education,
health, and social services, and political marginalization
(Figure 3). This leads to a spatial correlation of biodiverse
areas and poverty.

A major driver of biodiversity loss globally is demand and
consumption of natural resources from urban areas and from
the developed or rapidly developing world (DeFries et al.,
2010). Urban populations have continued to increase in all
parts of the globe over the last century (Figure 1(c)) with in-
creases in consumption that put pressure on agriculture and the
natural resource bases at the expense of biodiversity. The loss of
biodiversity in poor rural areas of developing countries occurs
as local residents and governments are driven by such demands
to exploit their natural capital to increase national economic
growth. Natural resource extraction and land conversion – such
as timber extraction, mineral extraction, expansion of agri-
culture or aquaculture, and urban growth – are often under-
taken in environmentally irresponsible ways, due to some
combination of weak governance, perverse incentives, and
economic desperation. Whether out of economic necessity,
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wage employment or cash income, poor access to education,
health, and social services, and political marginalization
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For examples, there are direct trade-offs between biodiversity and food production

Knowledge about biophysical constraints (e.g., how much biodiversity is possible in a region) is 
critical to managing the trade-offs
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Regions differ in maximum biodiversity

Amazonia has a higher capacity to sustain biodiversity than US Midwest
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Regions differ in the biophysical constraints that 
underlie trade-offs in biodiversity and food 

production capacity
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Agricultural capacity is higher in the US Midwest or regions of Amazonia than 
western Africa
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Remote sensing offers potential to determine 
the biophysical constraints for decision makers

Cavender-Bares	et	al	2015



IPBES:	Assessing	trends	in	diversity	and	ecosystem	function

(expert opinion…) 
We can do better!

Units	of	analysis



Contributions	of	biomes	to	ecosystem	services	and	
recent	trends

SPM Americas
IPBES 2018

Units	of	Analysis
(Biomes)

Nature’s	
Contributions	to	

People
(Ecosystem	services)



Needed: A satellite mission for continuous global 
detection of changes in the functions and functional 

diversity of plants and their ecosystem consequences

Jetz et	al	2016



Jetz et	al	2016



Definition of biodiversity

Biodiversity is the variability among living 
organisms from all sources….including diversity 

within species, between species, and of 
ecosystems.

“Biodiversity is the living fabric of our planet -
the source of our present and our future.”



Origins of biodiversity on Planet Earth

Speciation, extinction, diversification of the major lineages 
in the tree of life

65	mya 65	mya



Metcalfe	and	Isozaki 2009	after	Sepkoski,	1984

Five mass extinctions before the 
Anthropocene

6th mass	
extinction
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Earth’s	biota	looked	very	different	in	the	deep	past
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Biogeographic origins leave legacies on the 
functions of species

Cavender-Bares, Ackerly, Hobbie and Townsend 2016 AREES
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analytic approximations, may also be used to develop models from
first principles of population genetics, incorporating mutation,
selection, and drift (14–17). The third approach is to focus on
measurement or estimation of rates of phenotypic evolution, mea-
sured as the rate of evolutionary change in individual populations
or lineages, or the rate of phenotypic divergence among related
species (18, 19). Measurements of evolutionary rates are closely tied
to the choice of underlying evolutionary models, as discussed below.
The important difference is the focus on the parameter values
themselves (in relative or absolute units) rather than on the
identification of the best model.

In recent years, discussions of niche conservatism have fo-
cused on the first approach, the measurement and interpretation
of phylogenetic signal. Blomberg et al.’s (9) K statistic, which is
in wide use, takes on values from 0 to infinity, where higher
values mean a greater degree of phylogenetic signal. It is derived
from an underlying Brownian motion model that describes trait
evolution as a random walk along each lineage, where the change
that occurs in each unit of time is drawn from a normal
distribution with mean ! 0 and variance ! ! (or s2). The
variance term is often referred to as the rate parameter of the
Brownian process, because it describes the rate at which the trait
values of related species will diverge from each other. The K
statistic reflects the observed degree of similarity among rela-
tives, compared with expectations derived from the Brownian
model and the topology and branch lengths of the species
phylogeny. For traits that match the Brownian model expecta-
tion, K " 1. K # 1 is a low phylogenetic signal, meaning that
closely related species are more different from each other than
expected (compared with the differences that have accumulated
among distant relatives), and K $ 1 is a high degree of
phylogenetic signal, indicating that closely related species are
more similar than expected. ‘‘Traitgrams,’’ with species arranged
along a continuous trait axis, and connected by the underlying
phylogeny, help provide an intuition for the meaning and
interpretation of K (Fig. 1). Other approaches, such as disparity
through time plots (20), can also capture patterns of phylogenetic

signal and often rely on Brownian motion as a standard or null
model for comparison.

Harvey and Pagel (2), when they introduced the concept of
niche conservatism, explicitly proposed it as a process that can
explain the observation that related species are ecologically
similar. This has led to the idea that evidence of niche conser-
vatism will be detected in the strength of phylogenetic signal. In
a recent article, Losos (21) extended this idea and specifically
proposed that niche conservatism should be identified by values
of K $$ 1. Brownian motion essentially serves as a null model,
and niche conservatism should be defined as a significantly
greater degree of similarity among related species than that
arising from a Brownian-like process. Although Losos’ article is
a valuable contribution to the discussion of niche conservatism
and adaptive evolution, I believe that the focus on phylogenetic
signal is incomplete at best and in some cases may be misleading
for the questions at hand.

I propose that a renewed attention to rates of trait diversifi-
cation is important for the analysis of niche conservatism and
adaptive radiation. Specifically, I propose that low rates of trait
evolution, for ecologically relevant traits, will provide the best
evidence of niche conservatism in comparative data. To address
this proposition, I first discuss a simple method for calculating
rates of trait evolution and introduce a unit of measurement, the
felsen. I then address two questions: (i) What is the relationship
between rates of evolution and phylogenetic signal for contin-
uous traits, under several alternative evolutionary models, and
what are the consequences for estimating evolutionary rates in
empirical data? (ii) What are the observed evolutionary rates
and patterns of phylogenetic signal for several plant functional
traits in clades from different biogeographic regions? Compar-
ison of evolutionary rates for exemplary cases of adaptive
radiations (e.g., silverswords in Hawai’i; ref. 22) versus more
ecologically conserved groups (e.g., north temperate Acer) il-
lustrates the utility of this approach to quantify differences in
phenotypic diversification across lineages.

3.5 4.0 4.5 5.0 5.5 6.0 6.5 5.5 6.0 6.5 7.0 7.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

K = 0.18 K = 0.93 K = 1.62

A B C

d)

0 10.15

Brownian motionTip-swap

A B C D E

K

Fig. 1. Illustration of phylogenetic signal. (A–C) Phylogenetic traitgrams illustrating low, medium, and high values of the K statistic for phylogenetic signal.
Tips of the phylogenies are arrayed along the x axis showing the species trait values, and internal node positions correspond to ancestral states obtained by
maximum likelihood. Node depths reflect phylogenetic branch lengths. Traitgrams with more branches crossing (A) indicate greater convergent evolution.
Examples illustrated are for evolution of leaf size in Hawaiian lobeliads (A), Aesculus (B), and Arbutoideae (C). (D) Axis of K values, indicating five different regions
relative to alternative null models. Zones B and D illustrate the range of values obtained under a tip-swap null model for no phylogenetic signal, and under a
Brownian motion model, respectively; the exact ranges of values under each model will depend on sample size, phylogenetic topology, and, for zone B, the
distribution of trait values (see ref. 9). Zone A has less signal than expected under the tip-swap null model. Zones C–E all correspond to a significant degree of
signal, relative to the tip-swap null model. Only zone E exhibits significantly greater signal than expected under Brownian motion.

19700 ! www.pnas.org"cgi"doi"10.1073"pnas.0901635106 Ackerly

Ackerly 2009

Trait attributes and phylogenetic 
relationships

Distant relatives have 
similar function 
(convergence)

Distant relatives have 
dissimilar function 

(conservatism)

Trait	valuesTrait	values Trait	values

Time



Macroevolution and Microevolution 

http://www.talkorigins.org/faqs/macroevolution.html

Forces of evolution: 

mutation, gene flow, 
genetic drift, and 
natural selection



Boucher	&	
Démery
2016	

Brownian Motion model 
(without bounds)

Brownian Motion model 
with bounds

686 The American Naturalist

Figure 3: Simulations of Brownian motion (BM) and multiple-optimum
Ornstein-Uhlenbeck (OU) processes with branching. Phenotypic value
along Y-axis, time along X-axis. A, A single lineage evolves until a spe-
ciation event occurs from which two lineages (light gray, black) emerge.
B, Lineages evolve according to BM, with light gray and black lineages
evolving independently after the speciation event. C, Lineages evolve
under an OU model. A single selective regime exists before the speciation
event; two distinct selective regimes afterward. Distributions of the evolv-
ing quantitative character are shown at right. Brownian motion produces
a unimodal trait distribution centered at the initial (ancestral) value,
whereas the OU process results in a multimodal trait distribution with
peaks near each optimum. An animation of this process is provided in
the online edition of the American Naturalist.

them. Under this interpretation, evolutionary changes on
the macroevolutionary timescale occur as the balance
among these selective forces shifts as the individual selec-
tive forces themselves undergo small, independent (or
nearly independent) random changes. In other words,
Hansen interprets the OU process as a qualitative model
of the dynamics of peaks in an adaptive landscape.

Although questions of its interpretation remain open,
it is clear that the OU process can be used to describe the
evolution of a single lineage. One can blend in phyloge-
netic information by assuming that each lineage in the tree
evolves according to its own OU process, that is, that there
is one optimum per branch of the phylogeny. Complex
evolutionary scenarios can be modeled by allowing dif-
ferent branches of the phylogeny to have different optima
(fig. 3). We refer to this application of the OU process to
evolution along a phylogenetic tree as the “Hansen model.”
Each hypothesis that we wish to test is expressed as a
particular arrangement of optima on the branches of the
phylogeny. The arrangement of optima is naturally guided
by any biological insight we may have into the selective
regimes currently and historically operative in our study
system. Each hypothesis yields a different distribution of
phenotypes, which may then be used directly as the basis
for an ML approach to statistical inference. We now de-
scribe, in some detail, the implementation of the Hansen
model.

Nuts and Bolts

In this section, we demonstrate how the OU process can
be integrated with phylogenetic information and biological
hypotheses to give specific predictions on the distribution
of trait values. Three components are needed: (1) a set of
data on the distribution of a quantitative character across
species, (2) a phylogeny with branch lengths showing the
evolutionary history of the species in question, and (3)
one or more hypotheses regarding the selective regimes
operative on each of the branches in evolutionary time.
In this framework, and in keeping with other comparative
methods, components (1) and (2) comprise the data while
the hypotheses (3) translate into models to be fit to the
data. Each assignment of adaptive regimes to phylogenetic
branches gives a distinct model that is then fit to the data.
Model selection criteria, which take into account both
number of parameters and goodness of fit, can then be
applied as a basis for scientific inference.

We comment here on two issues involving the phylog-
eny: on polytomies and on the units in which branch
lengths are reported. First, for the application of Hansen’s
model, it is not necessary that the phylogeny be fully re-
solved: polytomies pose no difficulties in the computa-
tions. We stress, however, that in this approach, phylog-

enies are assumed to accurately reflect the evolutionary
history of the system in question. Thus, polytomies are
assumed to reflect true radiation and not phylogenetic
uncertainty. The effect of phylogenetic uncertainty on
comparative hypotheses is an important topic; in this ar-
ticle, we give only a brief indication of how phylogenetic
uncertainty can be incorporated into the model-selection
procedure. Second, the Hansen model requires phyloge-
netic branch lengths to be on a common timescale. Because
the units of a and j are directly related to time, inter-

Butler	&	King	2004	
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The hierarchical 
organization of plant 
diversity that results from 
evolutionary history 
provides a framework for 
predicting functional and 
spectral similarity of 
organisms
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Greater accuracy 
with increasing 

phylogenetic levels
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higher accuracy than 
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Cavender-Bares, Meireles et al 2016Assignment accuracy (Kappa score)
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Genotype and phenotype
• The genetic program—or “genotype”—of an 

organism interacts with its environment to 
express the “phenotype” we can observe

• “Plasticity” is the phenotypic variation we see 
under different environmental conditions
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Spatial patterns of biodiversity
Global terrestrial vertebrate biodiversity map

Mannion et al. 2014

Are there more species in the tropics because the tropics is an earlier biome and has been 
around longer?



Angiosperm plant family richness

Francis	and	Currie	2003



Models based on integrated climate—temperature, 
precipitation and potential evapotranspiration—predict 
angiosperm family richness well

Temperature–water 
deficit model 

PET–water
deficit model

Francis	and	Currie	2003



Humboldt hypothesized the shifting role of abiotic 
and biotic factors in structuring biodiversity at high 

and low latitudes and altitudes

von	Humboldt	1817



Adapted from Whittaker 1975, Communities and Ecosystems

Stress gradients - rainfall



Butterfly diversity is correlated 
with habitat heterogeneity in 

Canada

Kerr, Southwood, Cihlar. 2001from processed classified SPOT4yVGT data 



Darlington 1957
(in Wilson 1992)
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Species
(S)

Area (A)

slope is z

log A

log S

S = cAz log (S) = log(c) + z log(A)

Species - Area Curves



Alpha (a), beta (b) and gamma (g) diversity

Total species in a region: 
Gamma (γ) diversity

Mean species per location: 
Alpha (α) diversity

Beta diversity tells us how 
many more species the 
landscape (γ) contains 
compared to an average 
subunit within it (α)

β = γ/α

R. H. Whittaker 1972



Species richness increases towards the 
tropics

IPBES Americas Chap 3

Amphibians Birds Mammals Plants
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Lambir, Borneo 1,200 species in 52-ha plot

Hypotheses:

• Tropical environments have been around longer in Earth’s history 
and covered greater area over time, so more species evolved in the 
tropics – fewer lineages have adapted to other biomes

• Tropical environments support more species – more solar energy, 
which permits more metabolic energy

• Greater stability (less (glacial) disturbance, less seasonal stress)

• Pathogen and pest pressure prevents competitive displacement

• More spatial heterogeneity, greater niche differentiation (??)

Latitudinal gradients in diversity
One of the most studied patterns in macroecology!



Plant Functional Diversity

IPBES Americas Chap 3

Specific Leaf Area Seed Mass Max Plant Height



Photo: Catherine Hulshof

Functional traits and the leaf economic spectrum

Nitrogen (mg g-1)
Phosphorus (mg g-1)
Leaf mass per area (LMA) = 1/ Specific leaf area (SLA) (g cm-2 or kg m-2)
Leaf lifespan = average time a leaf persists (days, weeks, months)
Light saturated net photosynthetic rate = Max carbon assimilation rate (Amax) (nmol C g-1 s-1)



Reich	et	al	1997

6.2 Interactions of Nitrogen, Light,
and Water

Because of the coordinated responses of all photo-
synthetic processes, any environmental stress that
reduces photosynthesis will reduce both the diffu-
sional and the biochemical components (Table 5).
Therefore, N concentration per unit leaf area is typi-
cally highest in sun leaves, and declines toward the
bottom of a canopy. In canopies ofNicotiana tabacum
(tobacco), this partially reflects higher rates of CO2

assimilation of young, high-N leaves in high-light
environments (Boonman et al. 2007). In multi-spe-
cies canopies, however, the low leaf [N] per area in
understory species clearly reflects the adjustment of
photosynthetic capacity to the reduced light avail-
ability (Table 5; Niinemets 2007).

6.3 Photosynthesis, Nitrogen, and Leaf
Life Span

As discussed in Chapter 6 on mineral nutrition
and Chapter 7 on growth and allocation,

plants acclimate and adapt to low soil N and
low soil moisture by producing long-lived
leaves that are thicker and have a high leaf
mass density, a low specific leaf area (SLA; i.e.,
leaf area per unit leaf mass) and a low leaf N
concentration. Both broad-leaved and conifer
species show a single strong negative correla-
tion between leaf life-span and either leaf N
concentration or mass-based photosynthetic
rate (Fig. 33; Reich et al. 1997). The low SLA in
long-lived leaves relates to structural properties
required to withstand unfavorable environmen-
tal conditions (Chapter 7 on growth and alloca-
tion). There is a strong positive correlation
between SLA and leaf N concentration for dif-
ferent data sets (Fig. 33). Together, the
greater leaf thickness and low N concentrations
per unit leaf mass result in low rates of photo-
synthesis on a leaf-mass basis in long-lived
leaves (Fig. 33). Maximum stomatal conductance
correlates strongly with leaf N, because gs scales
with Amax (Wright et al. 2004).

FIGURE 33. Relations of (A) mass-based maximum rate of
CO2 assimilation, (B) leaf N concentration, and (C) spe-
cific leaf area of young mature leaves as a function of

their expected leaf life-span. The symbols refer to a data
set for 111 species from six biomes (after Reich et al.
1997).

Effects of Soil Nutrient Supply on Photosynthesis 59

Leaf functional traits are correlated: a consequence 
of biophysical constraints and natural selection?



Leaf economic spectrum:
the slow-fast continuum – a major axis of life history variation

LMA (g m-2)

Wright et al 2004



Due to shared ancestry, species are 
non-independent units of observation and 

standard correlations are problematic

6 THE AMERICAN NATURALIST 
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FIG. 7.-The same data set, with the points distinguished to show the members of the 2 

monophyletic taxa. It can immediately be seen that the apparently significant relationship of 
fig. 6 is illusory. 

of species from which we are sampling. This does not work. Imagine two species 
that have diverged some time ago, and thus have diverged in both brain and body 
weight. Clearly the correlation between those characters cannot be significant, 
since there are only two points. Now if each species gives rise to a group of 100 
daughter species, essentially identical to it, we now have two clusters of 100 
species each. Sampling species from this pool of 200 species, we are actually 
sampling from two species, but do not know it. Correctly analyzed, no data from 
this group could possibly achieve significance, but if we draw (say) 50 species at 
random from the 200 and analyze that data as if the points were independent we 
will probably conclude that there is a significant correlation between brain and 
body weight. 

There is one case in which the problem does not arise. That is when the 
characters respond essentially instantaneously to natural selection in the current 
environment, so that phylogenetic inertia is essentially absent. In that case we 
could correlate a phenotype with the environment. We could also correlate two 
characters with each other, provided that we realized that their correlation might 
simply reflect response to a common environmental factor. It may be doubted 
how often phylogenetic inertia is effectively absent. In any case the presumption 
of the absence of phylogenetic inertia should be acknowledged whenever it is 
proposed to do comparative studies without taking account of the phylogeny. 

PREVIOUS APPROACHES 

The problem of correcting for nonindependent evolutionary origins has not 
gone unnoticed by previous workers in comparative biology. Clutton-Brock and 
Harvey (1977, pp. 6-8) pointed out that "if phylogenetic inertia is strong, the 

This content downloaded from 134.84.147.156 on Mon, 20 Oct 2014 11:49:33 AM
All use subject to JSTOR Terms and Conditions

Felsenstein 1985

1 20 21 40 

FIG. 5.-A "worst case" phylogeny for 40 species, in which there prove to be 2 groups 
each of 20 close relatives. 

Y~~~~~~~ 
V~~~~~~~~ W~~~~~~ 

FIG. 6.-A typical data set that might be generated for the phylogeny in fig. S using the 
model of independent Brownian motion (normal increments) in each character. 
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All use subject to JSTOR Terms and Conditions

-> Method of independent contrast correlations

Ackerly & Reich 1999 showed that after taking phylogeny into account 
most relationships still held, but leaf area correlations disappeared



Trait A

Trait B
Cavender-Bares	et	al	2009

Traits can be uncorrelated within lineages but still correlated 
across them – they also may be convergent



Díaz et al. 2015

The global spectrum of plant form and function.

Occupancy of six-
dimensional trait 
space is strongly 
concentrated, 
indicating 
coordination and 
trade-offs. 

Three-quarters of 
trait variation is 
captured in a two-
dimensional global 
spectrum of plant 
form and function. 

Non-woody

Woody

Gymnosperms
Ferns



Metrics	of	biodiversity

• Taxonomic diveristy: Species or family 
richness

• Phylogenetic diversity
• Genetic diversity
• Functional diversity
• Spectral diversity
• Geodiversity, etc.



Components of (alpha) diversity 
metrics

• Number of species (or entities)
• Abundance

• Evolved distance between species

• Functional distance between species (or pixels)
• Dispersion in trait space



Community I Community II

Species A 99 50

Species B 1 50

Community I Community II

H ' = − Pi lnPi
i=1

s
∑

Pi is the proportion of species i
relative to the total number of 
species, S.

Simpson’s Diversity Index, D
(incorporates richness and evenness)
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Taxonomic	Diversity



Phylogenetic Measures of Biodiversity E69

Figure 1: Phylogenies with values for the metrics of phylogenetic species
variability (PSV), phylogenetic species richness (PSR), and phylogenetic
species evenness (PSE). A, PSV and PSR are at their maxima (1 and
species richness, respectively) when a community phylogeny is a star.
Because two species of the right-hand phylogeny are related, PSV and
PSR values are less than the values of the left-hand phylogeny. B, When
a species is added to a community, the resulting values of PSV and PSR
are dependent on the species branch length and where on the phylogeny
the species is added. Relative to the right-hand phylogeny of A, PSV
decreased in the left-hand phylogeny of B, while PSV increased in the
right-hand phylogeny of B. C, Our metric PSE essentially grafts each
individual of a community onto the tip of the phylogeny of its species
with branch lengths of 0. For the left-hand phylogeny, PSE is equal to
PSV because all species abundances are equal. When abundances are
uneven, PSE is generally less than PSV, as in the right-hand phylogeny.
When species are phylogenetically even, as in the left-hand phylogeny of
A, and have even abundances, .PSE p 1

variability (PSV) quantifies how phylogenetic relatedness
decreases the variance of this hypothetical unselected trait
shared by all species in the community. To calculate PSV,
only information about the phylogenetic relatedness of
species in a community is needed, not information about
any particular trait. Nonetheless, framing this measure in
the context of a hypothetical neutral trait gives a metric
that has not only an intuitive interpretation but also ap-
pealing statistical properties. The second metric quantifies
phylogenetic species richness (PSR) as the number of spe-
cies in a community multiplied by the community’s PSV.
This metric is directly comparable to the traditional metric
of species richness but includes phylogenetic relatedness.
The third metric measures phylogenetic species evenness
(PSE). It is the metric of PSV modified to incorporate
relative species abundances. The maximum attainable
value of PSE (i.e., 1) occurs only if species abundances are
equal and species phylogeny is a star (i.e., a phylogeny
that depicts a burst of radiation with each species evolving
independently from a common starting point; fig. 1; Fel-
senstein 1985). Thus, PSE is a measure of both phyloge-
netic and species evenness.

We derive these three metrics and develop permutation
tests that compare the compositions of multiple com-
munities under hypotheses about community assembly.
We illustrate the metrics using a data set of lake fish com-
munities. In appendix A, we compare similar metrics to
ours: the net relatedness index (NRI) and the nearest taxon
index (NTI), developed by Webb and colleagues (Webb
2000; Webb et al. 2002); Faith’s phylogenetic diversity (PD;
Faith 1992); and McIntosh evenness (E; Magurran 1988).
A major advantage of our metrics is that they provide a
comprehensive set of measures for different aspects of
community composition.

Methods

Phylogenetic Species Variability

Our measure of phylogenetic species variability summa-
rizes the degree to which species in a community are phy-
logenetically related. When a community phylogeny is a
star, the index equals 1, indicating maximum variability.
As relatedness increases, the index approaches 0, indicating
reduced variability. To derive the measure, suppose a com-
munity contains n species whose evolutionary relation-
ships are given by a known phylogenetic tree (hereafter
called the community phylogeny). We assume that branch
lengths of the community phylogeny are proportional to
the evolutionary divergence between species. Thus, com-
munity phylogenies derived from studies of neutral mo-
lecular markers are ideal. In the absence of a neutral-based
phylogeny, phylogenies based on phenotypic traits or fossil

records can be used solely, or in combination with a simple
sorting of species by taxonomy, to create trees with ar-
bitrary branch lengths separating taxonomic levels (e.g.,
Grafen 1989; Webb 2000).

To translate a community phylogeny into the measure
of phylogenetic species variability, consider a hypothetical
unselected (neutral) continuous-valued trait that evolves
randomly and independently among separate phylogenetic
lineages. In this Brownian motion model of evolution,
branch lengths of the community phylogeny are propor-
tional to the expected variance in the unselected trait value
for each species (Felsenstein 1985; Garland et al. 1993).
Specifically, let Xi denote the value of neutral trait X for

Phylogenetic	species	variability	(PSV)
Independent	of	number	of	species

Phylogenetic	species	richness	(PSR)
Increases	with	number	of	species

Phylogenetic	species	evenness	(PSE)
Includes	abundance

Helmus 2007

Helmus et al 2007

Faith’s	PD:	the	sum	of	the	lengths	of	all	
phylogenetic	branches	(from	the	root	to	
the	tip)	spanned	by	a	set	of	species

Faith 1992

Phylogenetic	Hill	number
qD(T)
Effective	number	of	equally	abundant	
and	equally	distinct	lineages

Phylogenetic	branch	diversity
qPD(T)
Effective	total	lineage-length	(total	
evolutionary	history	of	an	
assemblage	since	time	T	(root	node)

Chao 2010

Phylogenetic	Diversity		



Table S1. Metrics of functional diversity 

Metric Symbol Description Formula Quantities Source 

Functional 

diversity 
FD 

Sum of branch 

lengths 

 

i’ × h2 Distance 
(Petchey & 

Gaston 2002) 

Functional 

attribute 

diversity 

FAD 
Sum of pairwise 

distances 
! ! "#$

%

$&'

%

#&'
 Distance 

(Walker, Kinzig 

& Langridge 

1999) 

Functional 

richness 
FRic Convex hull volume Quickhull algorithm Distance 

(Cornwell, 

Schwilk & 

Ackerly 2006) 

Functional 

evenness 
FEve 

Sum of branch 

lengths weighted by 

abundance 

∑ min	(./0#, 1
3 − 1)

%6'
#&' −	 1

3 − 1
1 −	 1

3 − 1
 

Distance, 

abundance 

(Villéger, 

Mason & 

Mouillot 2008) 

Rao’s quadratic 

entropy 
Q 

Sum of pairwise 

distances weighted 

by relative 

abundance 

! ! "#$7#7$
%

$&'

%

#&'
 Distance, abundance (Rao 1982) 

Total functional 

diversity 

qFD(Q) 

Functional trait-

weighted abundance 

diversity 

8! ! "#$
%

$&'

%

#&'
97#7$: ;

<
=
'/('6<)

 

Distance, abundance, 

effective number of 

distinct species 

(Chiu & 

Chao 2014) 

Functional 

distance 
FDis 

Mean distance from 

the centroid weighted 

by relative abundance 

∑ "#$#%
#&'
∑ $#%
#&'

 Distance, abundance 

(Laliberté & 

Legendre 

2010) 

Functional 

divergence 
FDiv 

Deviance from the  

centroid of the 

convex hull weighted 

by abundance 

∆" +	"+,,,,
∆|"| + "+,,,, Distance 

(Villéger, 

Mason & 

Mouillot 2008) 

Mean dispersion M Mean pairwise distance 
∑ ∑ "#.%

.&'
%
#&'

/0  Distance Eq. A1 

Standardized 

mean dispersion 
M′ 

Standardized mean 

pairwise distance 
        

%
%1'2  Distance Eq. A2 

Functional-trait 

Hill diversity 

qH(T) 
Variability in 

pairwise distances 
34 4 3 "#.

∑ ∑ "#.%
.&'

%
#&'

5
6%

.&'

%

#&'
5
'/('16)

 
Effective number of 

pairs of distinct species 
Eq. A3 

Functional-trait 

species diversity 

qD(T) 
Variability in 

pairwise distances 

1 + ;1 + 4 =(>)6

2  

Effective number 

of distinct species 
Eq. A4 

Functional-trait 

evenness 

qE(T) 
Evenness in pairwise 

distances 

@(>)6

/  
Relative number 

of distinct species 
This paper 

Functional-trait 

dispersion 

qD(TM) 
Mean and variability 

in pairwise distances 
1 + qD(T) × M 

Distance, effective number 

of distinct species 
Eq. A6 
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Scheiner’s functional trait dispersion qD(TM)
Based on the uniqueness concept -- maximum diversity is when each species occurs 
at the boundary of trait space and they are as equally far apart from each other as 
possible

qDðAÞ ¼
XS

i¼1
pqi

! " 1
ð1$qÞ

eqn 1

and

1DðAÞ ¼ lim
q!1

qDðAÞ ¼ exp $
XS

i¼1
p
i
log pi

! "
; eqn 2

for non-negative q 6¼ 1 and q = 1, respectively, where S is the

number of species, pi is the proportional abundance of the ith

species, q is the order of the diversity metric that determines

the weighting of proportional abundances and A indicates

that diversity is measured based on abundances. The index

has a range of [1,S] and measures species equivalents. It mea-

sures the effective number of species that a community would

contain if it had the same diversity and all species had the

average abundance. Values of 0, 1 and 2 for q are common

and associated with popular metrics. When q = 0, 0D(A)

equals species richness; when q = 1, 1D(A) is the exponential

of Shannon diversity; and when q = 2, 2D(A) is the Gini–
Simpson index (Hill 1973; Chiu, Jost & Chao 2014). As the

value of q increases, the relative contributions of more abun-

dant species increase. Measured in this way, diversity

comprises two components, richness and evenness: qD

(A) = S 9 qE(A) (Tuomisto 2012). An analogous measure of

phylogenetic diversity based on the relative branch lengths of

each species reflects the number of equally divergent species

(Scheiner 2012). This metric also comprises components of

richness and evenness. Because abundance and phylogenetic

diversity are measured in species equivalents, comparisons are

facilitated among communities and between measures of

diversity based on different types of species characteristics

(e.g. abundance, evolutionary history).

Abundance and phylogenetic diversity are each based on a

single characteristic of each species. In contrast, functional

diversity is typically based on multiple traits of each species.

Previously, we (Presley, Scheiner &Willig 2014) defined a met-

ric of functional diversity based on the Hill index. That metric

captured two components, richness and functional evenness,

expressed as the number of equivalently distinct species from a

functional perspective, making it analogous to Hill diversity as

measured for abundance or phylogeny. However, that mea-

sure of functional diversity only reflects the evenness of the dis-

tribution of species in trait space. Functional diversity has

another characteristic, the magnitude of dispersion of species

in trait space. Here, we produce an integrated measure that

combines richness, evenness and dispersion into a single

metric, functional-trait dispersion.

Functional diversity

CONCEPTS

Functional-trait dispersion is based on the concept of distinc-

tiveness as measured by the distance among species in multidi-

mensional trait space. For categorical traits, functional

diversity can be defined based on one of these two concepts:

1 Functional diversity is greatest when each species in an

assemblage has a unique set of trait attributes.

2 Functional diversity is greatest when an assemblage contains

species that have every possible combination of trait attributes.

For simplicity, we label these the ‘uniqueness’ and ‘combina-

torics’ concepts respectively. Our metric is based on the

uniqueness concept; many other metrics are based on the com-

binatorics concept (see below). The uniqueness concept for

continuous traits posits that maximum diversity corresponds

to each species occurring at the boundary of trait space and

being equally as far apart from each other as possible. For the

combinatorics concept, maximal diversity occurs when the dis-

persion of species is as compact as possible while equalizing the

minimumdistances between species (Fig. 1).

Ametric of functional diversity should be able to distinguish

between communities of species that differ in several properties

that emerge from the uniqueness concept. For two communi-

ties, functional diversity should be larger for the community

that has a greater dispersion of species in the trait space, amore

equitable distribution of species in trait space (evenness) or

greater species richness. Consequently, an integrated metric

should combine the properties of dispersion, evenness and

richness, and be decomposable into those separate compo-

nents. Moreover, the metric should facilitate the separation of

functional diversity with respect to a hierarchy, that is a larger

unit such as a landscape (c-diversity) into the mean functional

diversity of constituent subunits such as local communities

(a-diversity) and to variation among those subunits or local

communities (b-diversity). Finally, a metric of functional

diversity should not be confounded by considerations of other

properties of species, such as abundance or phylogenetic dis-

tance, but should facilitate integration with other properties

into amore comprehensivemetric.

When functional diversity is based on the dispersion of spe-

cies in trait space, it is ameasure of the way that species charac-

teristics affect the role of a species within a community

(‘function of’). This aspect of functional diversity is closely

related to concepts of the niche (Chase & Leibold 2003). In

contrast, a metric can reflect ‘function for’, the way that each

species affects ecosystem properties (e.g. the amount of carbon

fixed per unit area per unit time). It is possible tomeasure func-

tion-for diversity as species equivalents (Scheiner 2012), and

discussions of functional diversity are typically couched in

Trait 1
Tr

ai
t 2

Trait 1

Tr
ai

t 2

(b)(a)

Fig. 1. Graphic representation of the position of five species in func-
tional space defined by two traits. (a) An illustration of the uniqueness
concept where each species has the same set of distance with all of the
other species and are as distant from each other as possible. (b)An illus-
tration of the combinatorics concept where each species has the same
minimum distance, in this case the distance to the central species, in as
compact an arrangement as possible.
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attempts to understand the ways that diversity affects

ecosystem processes (Tilman et al. 1997; Hooper et al. 2005;

Nunes-Neto, Moreno & El-Hani 2014; Mokany et al. 2016).

However, function-for is difficult to measure, so research

efforts generally focus on function-of, an exception being

Cadotte et al. (2009). Generally, function-of is assumed to be a

proxy of function-for. We focus on diversity that reflects func-

tion-of and leave the chore of linking diversity with

function-for to a later endeavour.

COMPONENTS

Measures of abundance and phylogenetic diversity based on

Hill numbers have two components – richness and evenness –
embodied in a multiplicative relationship, diversity = rich-

ness 9 evenness (Jost 2006; Scheiner 2012). For functional

diversity based on trait values of species, the central properties

to capture are the configuration and dispersion of species in

trait space. Consequently, considerations of trait space require

concepts of richness and evenness that are different from those

usedwith regard to abundance or phylogeny.

Mason et al. (2005) recognize three components of func-

tional diversity: functional richness, functional evenness and

functional divergence (we prefer to restrict the term ‘diver-

gence’ to characterize phylogenies, and recommend ‘distinc-

tiveness’ to characterize function). In their lexicon, functional

richness is the amount of trait space occupied by species; func-

tional evenness is the equability of abundances in trait space;

and functional distinctiveness is the dispersion of species in

trait space weighted by their abundances. Of the many metrics

that have been proposed, six are most commonly used (Rey-

nolds et al. 2015): richness as FDor FRic, evenness as FEve and

distinctiveness as Rao’s Q, FDis or FDiv (Table S1). We con-

sider two additional metrics. Functional attribute diversity

(FAD) is ameasure of functional distinctiveness, and is the origi-

nal functional diversity metric. Total functional diversity, qFD

(Q), has been proposed recently and is the only metric that com-

bines richness, evenness and abundance-weighted dispersion.

The weighting of trait values by abundance is based on the

assumption that function-for has a linear relationshipwith spe-

cies abundances. However, such weighting confounds func-

tion-of with function-for. Importantly, there is no justification

for assuming that function-for effects will scale linearly with

abundance or that such scaling will be the same for all species.

Even within a group of closely related and morphologically

similar species such as New World bats, body mass can range

from 5 to 190 g. Food consumption or seed dispersal by ten

individuals of a large canopy frugivore (e.g. Aribeus lituratus,

60!3 g) is unlikely equal to food consumption or seed dispersal

by ten individuals of a small canopy frugivore (e.g.Mesophylla

macconnelli, 6!9 g). Consequently, one could argue that trait

values should be weighted by the cumulative mass of a species

rather than by its abundance, and even this assumes that meta-

bolic constraints are equivalent for all species. Such weighting

of trait values is arbitrary unless accompanied by a cogent con-

ceptual justification or empirical measures that corroborate

ecosystem consequences.

We take a different approach to richness, evenness and dis-

tinctiveness as it relates to functional diversity. Rather than

considering functional richness as a property of how trait space

is filled as per Mason et al. (2005), in our metric functional

richness is linked to species richness so that the integrated met-

ric measures quantities of distance and the effective number of

functionally distinct species and scales with species richness.

We define evenness, qE(T), as the extent to which species are

equally dispersed in trait space. Functional-trait species diver-

sity, qD(T), is based on variation in dispersion and uses the Hill

number framework, so it combines richness with evenness

(Presley, Scheiner & Willig 2014). We define dispersion as the

mean distance between all pairs of species in trait space. Our

measure of functional diversity – functional-trait dispersion –
integrates these properties in amultiplicative way so that diver-

sity increases with the product of richness, evenness and disper-

sion. This relationship, thus, has a direct parallel to

multiplicative measures of abundance and phylogenetic diver-

sity. Importantly, our metric of functional diversity measures

meaningful properties of communities independently of

species’ abundances.

Our concepts most strongly diverge from those of Mason

et al. (2005) with regard to evenness. Ignoring considerations

of abundance, for them species are most evenly dispersed in

trait space when each species has the same distance to its near-

est neighbour (Fig. 1a). For us, species are most evenly dis-

persed when each has the same distance to all other species.

For continuous traits, maximal evenness can occur only when

the number of species is less than or equal to the number of

traits plus 1. Otherwise, it occurs when species are arrayed in

trait space so that each species has the same relationship with

all other species and consequently the same set of distances

(Fig. 1b). Their approach is based on a combinatorics concept,

whereas our approach is based on a uniqueness concept.

CONSTRUCTING THE DIVERSITY METRIC

Let dij represent the standardized distance in trait space

between the ith and jth species, so that 0 ≤ dij ≤ 1, dij = dji and

dii = 0. The mean of those distances for all species is:

M ¼
PS

i

PS
j dij=S

2, where S is number of species.M provides

a measure of the magnitude of dispersion; it has a range of [0,

(S#1)/S] andmeasures standardized distance.

We next define the proportional distance between the ith

and jth species as fij ¼ dij=
PS

j dij. Using that, we obtain a

measure of variability among pairwise distances with the Hill

function (Hill 1973):

qHðTÞ ¼
XS

i

XS

j
f q
ij

! " 1
ð1#qÞ

; eqn 3

(by definition qH(T) = 0, if all dij = 0). From this quantity we

calculate functional-trait species diversity:

qDðTÞ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 qHðTÞ

p

2
: eqn 4

The derivation of this metric is given in the Appendix S1.

This metric indicates the effective number of equally distant
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Magnitude of dispersion

attempts to understand the ways that diversity affects

ecosystem processes (Tilman et al. 1997; Hooper et al. 2005;

Nunes-Neto, Moreno & El-Hani 2014; Mokany et al. 2016).

However, function-for is difficult to measure, so research

efforts generally focus on function-of, an exception being

Cadotte et al. (2009). Generally, function-of is assumed to be a

proxy of function-for. We focus on diversity that reflects func-

tion-of and leave the chore of linking diversity with

function-for to a later endeavour.

COMPONENTS

Measures of abundance and phylogenetic diversity based on

Hill numbers have two components – richness and evenness –
embodied in a multiplicative relationship, diversity = rich-

ness 9 evenness (Jost 2006; Scheiner 2012). For functional

diversity based on trait values of species, the central properties

to capture are the configuration and dispersion of species in

trait space. Consequently, considerations of trait space require

concepts of richness and evenness that are different from those

usedwith regard to abundance or phylogeny.

Mason et al. (2005) recognize three components of func-

tional diversity: functional richness, functional evenness and

functional divergence (we prefer to restrict the term ‘diver-

gence’ to characterize phylogenies, and recommend ‘distinc-

tiveness’ to characterize function). In their lexicon, functional

richness is the amount of trait space occupied by species; func-

tional evenness is the equability of abundances in trait space;

and functional distinctiveness is the dispersion of species in

trait space weighted by their abundances. Of the many metrics

that have been proposed, six are most commonly used (Rey-

nolds et al. 2015): richness as FDor FRic, evenness as FEve and

distinctiveness as Rao’s Q, FDis or FDiv (Table S1). We con-

sider two additional metrics. Functional attribute diversity

(FAD) is ameasure of functional distinctiveness, and is the origi-

nal functional diversity metric. Total functional diversity, qFD

(Q), has been proposed recently and is the only metric that com-

bines richness, evenness and abundance-weighted dispersion.

The weighting of trait values by abundance is based on the

assumption that function-for has a linear relationshipwith spe-

cies abundances. However, such weighting confounds func-

tion-of with function-for. Importantly, there is no justification

for assuming that function-for effects will scale linearly with

abundance or that such scaling will be the same for all species.

Even within a group of closely related and morphologically

similar species such as New World bats, body mass can range

from 5 to 190 g. Food consumption or seed dispersal by ten

individuals of a large canopy frugivore (e.g. Aribeus lituratus,

60!3 g) is unlikely equal to food consumption or seed dispersal

by ten individuals of a small canopy frugivore (e.g.Mesophylla

macconnelli, 6!9 g). Consequently, one could argue that trait

values should be weighted by the cumulative mass of a species

rather than by its abundance, and even this assumes that meta-

bolic constraints are equivalent for all species. Such weighting

of trait values is arbitrary unless accompanied by a cogent con-

ceptual justification or empirical measures that corroborate

ecosystem consequences.

We take a different approach to richness, evenness and dis-

tinctiveness as it relates to functional diversity. Rather than

considering functional richness as a property of how trait space

is filled as per Mason et al. (2005), in our metric functional

richness is linked to species richness so that the integrated met-

ric measures quantities of distance and the effective number of

functionally distinct species and scales with species richness.

We define evenness, qE(T), as the extent to which species are

equally dispersed in trait space. Functional-trait species diver-

sity, qD(T), is based on variation in dispersion and uses the Hill

number framework, so it combines richness with evenness

(Presley, Scheiner & Willig 2014). We define dispersion as the

mean distance between all pairs of species in trait space. Our

measure of functional diversity – functional-trait dispersion –
integrates these properties in amultiplicative way so that diver-

sity increases with the product of richness, evenness and disper-

sion. This relationship, thus, has a direct parallel to

multiplicative measures of abundance and phylogenetic diver-

sity. Importantly, our metric of functional diversity measures

meaningful properties of communities independently of

species’ abundances.

Our concepts most strongly diverge from those of Mason

et al. (2005) with regard to evenness. Ignoring considerations

of abundance, for them species are most evenly dispersed in

trait space when each species has the same distance to its near-

est neighbour (Fig. 1a). For us, species are most evenly dis-

persed when each has the same distance to all other species.

For continuous traits, maximal evenness can occur only when

the number of species is less than or equal to the number of

traits plus 1. Otherwise, it occurs when species are arrayed in

trait space so that each species has the same relationship with

all other species and consequently the same set of distances

(Fig. 1b). Their approach is based on a combinatorics concept,

whereas our approach is based on a uniqueness concept.

CONSTRUCTING THE DIVERSITY METRIC

Let dij represent the standardized distance in trait space

between the ith and jth species, so that 0 ≤ dij ≤ 1, dij = dji and

dii = 0. The mean of those distances for all species is:

M ¼
PS

i

PS
j dij=S

2, where S is number of species.M provides

a measure of the magnitude of dispersion; it has a range of [0,

(S#1)/S] andmeasures standardized distance.

We next define the proportional distance between the ith

and jth species as fij ¼ dij=
PS

j dij. Using that, we obtain a

measure of variability among pairwise distances with the Hill

function (Hill 1973):

qHðTÞ ¼
XS

i

XS

j
f q
ij

! " 1
ð1#qÞ

; eqn 3

(by definition qH(T) = 0, if all dij = 0). From this quantity we

calculate functional-trait species diversity:

qDðTÞ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 qHðTÞ

p

2
: eqn 4

The derivation of this metric is given in the Appendix S1.

This metric indicates the effective number of equally distant
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Variability among pairwise distances

attempts to understand the ways that diversity affects

ecosystem processes (Tilman et al. 1997; Hooper et al. 2005;

Nunes-Neto, Moreno & El-Hani 2014; Mokany et al. 2016).

However, function-for is difficult to measure, so research

efforts generally focus on function-of, an exception being

Cadotte et al. (2009). Generally, function-of is assumed to be a

proxy of function-for. We focus on diversity that reflects func-

tion-of and leave the chore of linking diversity with

function-for to a later endeavour.

COMPONENTS

Measures of abundance and phylogenetic diversity based on

Hill numbers have two components – richness and evenness –
embodied in a multiplicative relationship, diversity = rich-

ness 9 evenness (Jost 2006; Scheiner 2012). For functional

diversity based on trait values of species, the central properties

to capture are the configuration and dispersion of species in

trait space. Consequently, considerations of trait space require

concepts of richness and evenness that are different from those

usedwith regard to abundance or phylogeny.

Mason et al. (2005) recognize three components of func-

tional diversity: functional richness, functional evenness and

functional divergence (we prefer to restrict the term ‘diver-

gence’ to characterize phylogenies, and recommend ‘distinc-

tiveness’ to characterize function). In their lexicon, functional

richness is the amount of trait space occupied by species; func-

tional evenness is the equability of abundances in trait space;

and functional distinctiveness is the dispersion of species in

trait space weighted by their abundances. Of the many metrics

that have been proposed, six are most commonly used (Rey-

nolds et al. 2015): richness as FDor FRic, evenness as FEve and

distinctiveness as Rao’s Q, FDis or FDiv (Table S1). We con-

sider two additional metrics. Functional attribute diversity

(FAD) is ameasure of functional distinctiveness, and is the origi-

nal functional diversity metric. Total functional diversity, qFD

(Q), has been proposed recently and is the only metric that com-

bines richness, evenness and abundance-weighted dispersion.

The weighting of trait values by abundance is based on the

assumption that function-for has a linear relationshipwith spe-

cies abundances. However, such weighting confounds func-

tion-of with function-for. Importantly, there is no justification

for assuming that function-for effects will scale linearly with

abundance or that such scaling will be the same for all species.

Even within a group of closely related and morphologically

similar species such as New World bats, body mass can range

from 5 to 190 g. Food consumption or seed dispersal by ten

individuals of a large canopy frugivore (e.g. Aribeus lituratus,

60!3 g) is unlikely equal to food consumption or seed dispersal

by ten individuals of a small canopy frugivore (e.g.Mesophylla

macconnelli, 6!9 g). Consequently, one could argue that trait

values should be weighted by the cumulative mass of a species

rather than by its abundance, and even this assumes that meta-

bolic constraints are equivalent for all species. Such weighting

of trait values is arbitrary unless accompanied by a cogent con-

ceptual justification or empirical measures that corroborate

ecosystem consequences.

We take a different approach to richness, evenness and dis-

tinctiveness as it relates to functional diversity. Rather than

considering functional richness as a property of how trait space

is filled as per Mason et al. (2005), in our metric functional

richness is linked to species richness so that the integrated met-

ric measures quantities of distance and the effective number of

functionally distinct species and scales with species richness.

We define evenness, qE(T), as the extent to which species are

equally dispersed in trait space. Functional-trait species diver-

sity, qD(T), is based on variation in dispersion and uses the Hill

number framework, so it combines richness with evenness

(Presley, Scheiner & Willig 2014). We define dispersion as the

mean distance between all pairs of species in trait space. Our

measure of functional diversity – functional-trait dispersion –
integrates these properties in amultiplicative way so that diver-

sity increases with the product of richness, evenness and disper-

sion. This relationship, thus, has a direct parallel to

multiplicative measures of abundance and phylogenetic diver-

sity. Importantly, our metric of functional diversity measures

meaningful properties of communities independently of

species’ abundances.

Our concepts most strongly diverge from those of Mason

et al. (2005) with regard to evenness. Ignoring considerations

of abundance, for them species are most evenly dispersed in

trait space when each species has the same distance to its near-

est neighbour (Fig. 1a). For us, species are most evenly dis-

persed when each has the same distance to all other species.

For continuous traits, maximal evenness can occur only when

the number of species is less than or equal to the number of

traits plus 1. Otherwise, it occurs when species are arrayed in

trait space so that each species has the same relationship with

all other species and consequently the same set of distances

(Fig. 1b). Their approach is based on a combinatorics concept,

whereas our approach is based on a uniqueness concept.

CONSTRUCTING THE DIVERSITY METRIC

Let dij represent the standardized distance in trait space

between the ith and jth species, so that 0 ≤ dij ≤ 1, dij = dji and

dii = 0. The mean of those distances for all species is:

M ¼
PS

i

PS
j dij=S

2, where S is number of species.M provides

a measure of the magnitude of dispersion; it has a range of [0,

(S#1)/S] andmeasures standardized distance.

We next define the proportional distance between the ith

and jth species as fij ¼ dij=
PS

j dij. Using that, we obtain a

measure of variability among pairwise distances with the Hill

function (Hill 1973):

qHðTÞ ¼
XS

i

XS

j
f q
ij

! " 1
ð1#qÞ

; eqn 3

(by definition qH(T) = 0, if all dij = 0). From this quantity we

calculate functional-trait species diversity:

qDðTÞ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 qHðTÞ

p

2
: eqn 4

The derivation of this metric is given in the Appendix S1.

This metric indicates the effective number of equally distant
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Effective number of equally distant species

When all species are equally 
distant, D(T) is maximized

Scheiner et	al	2016

qD(TM) = 1 + qD(T) x M

qD(TM) = 1 +(S-1) x qE(T) x M’
Equivalent	to:	

Number	of	species	(or	pixels)	● evenness	of	dispersion	● magnitude	of	distances

Functional	Diversity		
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Table 1 Two major classes of phylogenetic similarity measures based on the transformations of phylogenetic beta diversity when species importance measures 
are incidences (for q = 0), relative abundances or absolute abundance (for q = 1 and 2). The corresponding differentiation measures are the one-complements of 
the similarity measures. When all lineages are completely distinct (this includes T ® 0 , ignoring phylogeny), these phylogenetic measures reduce to the 
corresponding non-phylogenetic versions. All measures can also be applied to non-ultrametric trees if T  is substituted for T
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Taxonomic, Phylogenetic and Functional Beta Diversity can 
also be calculated in multiple ways

Chao	et	al	2016

T=	age	of	root	node	of	tree
L	=	branch	length

a	=	relative	abundance	from	branch	I
N=	number	of	distince (not	shared)	lineages
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Shannon’s index). For both Shannon’s index and Simp-
son’s index, the difference between regression slopes at
1 mm and 1 cm scales were not significant. There were
significant differences between slopes at larger scales
(P < 0.001).
Evenness (Fig. 4e) showed similar but slightly weaker

relationship with spectral diversity than Shannon’s index.
A linear relationship was found between phylogenetic

evenness (Fig. 4f) and spectral diversity at fine scales
(1 mm). The relationship was not as strong as the species-
evenness–spectral-diversity relationship but still signifi-
cant at small spatial scales. Similar to the CV–plant-spe-
cies-richness relationships, ANCOVA tests suggested no
significant difference between 1 mm and 1 cm regression
slopes for CV–species-evenness and CV–phylogenetic-
evenness relationships.

FIG. 4. Spectral diversity (coefficient of variation) vs. conventional biodiversity metrics ((a)planted species richness, (b)
observed species richness, (c) Shannon’s index, (d) Simpson’s index, (e) species evenness, (f) phylogenetic species evenness) for vary-
ing pixel sizes (diameters). The definitions of conventional biodiversity metrics are in Table 1. Fit lines are not shown for P > 0.05.
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A linear relationship was found between phylogenetic

evenness (Fig. 4f) and spectral diversity at fine scales
(1 mm). The relationship was not as strong as the species-
evenness–spectral-diversity relationship but still signifi-
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ing pixel sizes (diameters). The definitions of conventional biodiversity metrics are in Table 1. Fit lines are not shown for P > 0.05.
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Spectral diversity (CV across pixels)
correlates with plant diversity depending on spatial resolution

Ran Wang
pixels

Cedar Creek



dotscircles are species pairs. ACHMI, Achillea millefolium L.; AGRSM, Agropyron
smithii Rydb.; AMOCA, Amorpha canescens Pursh; ANDGE, Andropogon gerardii
Vitman; ASCTU, Asclepias tuberosa L.; KOECR, Koeleria cristata auct. non Pers.
p.p.; LESCA, Lespedeza capitata Michx.; LIAAS, Liatris aspera Michx.; LUPPE,
Lupinus perennis L.; MONFI, Monarda fistulosa L.; PANVI, Panicum virgatum L.;
PETCA, Petalostemum candidum (Willd.) Michx.; PETPU, Petalostemum
purpureum (Vent.) Rydb.; POAPR, Poa pratensis L.; SCHSC, Schizachyrium
scoparium (Michx.) Nash; SOLRI, Solidago rigida L.; SORNU, Sorghastrum nutans
(L.) Nash.

Fig. 2

Spectral profiles, their coefficient of variation, and local maxima of the
coefficient of variation.
The range of vector-normalized spectra of all species (n = 17) is shown in red. The
black line is the coefficient of variation of vector-normalized reflectance values for
each spectral band (n = 2,000). The blue vertical lines indicate five local maxima of
the coefficient of variation (at 429, 675, 1,451, 1,981 and 2,360 nm); they align
closely with known absorption features for chlorophylls (at 430 and 660 nm),
carotenoids (at 430 nm), leaf water content (at 1,450 and 1,980 nm), proteins (at
1,980 and 2,350 nm) and cellulose (at 2,350 nm).

Spectral distance is associated with functional 
and phylogenetic distance between species

Schweiger, Cavender-Bares et al, Nature EE 2018Anna Schweiger

Functional distance Phylogenetic distance
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Consequences of biodiversity

• Ecosystem function
• Stability and resistance to disturbance
• Other trophic levels
• Links to ecosystem services 



Biodiversity predicts ecosystem productivity in manipulated 
experiments - the relationship has  increased through time

Reich, Tilman, Isbell, Mueller, Hobbie, Flynn, Eisenhauer 2012 Science

over, the relationship became increasingly non-
saturating (17) over the range of species richness
levels used (Fig. 1 and Table 1). The increasing
linearity is illustrated first by comparing the
Akaike Information Criterion (AIC) values of
saturating functions (Michaelis-Menten) with
decelerating functions. The saturating function
is the best model by AIC only in the first few
years in BioCON and is a poorer model than
decelerating functions (especially the power
function) in most years late in both experiments
(table S1). Second, the exponent from the pow-
er function fits (“b”) increased over time in both
experiments (Fig. 1 and Table 1), with increases
from 0 toward 1, indicating that the diversity-
productivity relationship is becoming more linear
and less strongly decelerating. Consequently, we
also observed increases over time for estimates of
the number of planted species required to yield
90% of the biomass in 16 species plots (the num-
ber of species required to generate most of the
diversity effect on biomass in a given year) (fig.
S2). Results were similar when we considered
aboveground or belowground biomass separate-
ly, when we considered absolute biomass, and
when we considered observed richness instead
of planted richness (figs. S3 to S5 and tables S2
and S3).

Because the statistical fits for the biodiversity
functions are imperfect at establishing the precise
shape of the relations, directly comparing across
species-richness treatments illuminates the role

Table 1. Model fit statistics for the power function describing the relationship between rel-
ative biomass yield (Y ) and planted richness ( S). Relative biomass yield was defined by di-
viding plot-level values by the mean monoculture yield, averaged across all monoculture plots within
each year.

Study DF Year
Power: ln(Y) = a + b × ln(S)

R2 P value a b

BioCON 71 1998 0.24 1.3 × 10–5 –0.20 0.29
72 1999 0.24 9.0 × 10–6 –0.30 0.37
72 2000 0.19 1.2 × 10–4 –0.18 0.26
71 2001 0.34 5.1 × 10–8 –0.18 0.39
72 2002 0.38 5.9 × 10–9 –0.14 0.34
72 2003 0.34 6.3 × 10–8 –0.23 0.36
70 2004 0.23 2.3 × 10–5 –0.46 0.45
70 2005 0.40 2.9 × 10–9 –0.18 0.38
71 2006 0.34 6.1 × 10–8 –0.28 0.44
64 2007 0.35 1.4 × 10–7 –0.17 0.33
64 2008 0.39 1.7 × 10–8 –0.30 0.46
64 2009 0.31 1.2 × 10–6 –0.41 0.45
63 2010 0.39 2.2 × 10–8 –0.36 0.51

BioDIV 150 1997 0.08 3.3 × 10–4 –0.07 0.17
150 1998 0.24 2.3 × 10–10 0.06 0.28
150 1999 0.31 1.2 × 10–13 0.02 0.32
150 2000 0.37 6.5 × 10–17 –0.03 0.35
150 2001 0.39 8.3 × 10–18 –0.02 0.35
150 2002 0.43 6.3 × 10–20 0.01 0.36
150 2003 0.38 2.1 × 10–17 –0.02 0.33
150 2004 0.45 5.6 × 10–21 0.01 0.36
150 2006 0.48 2.8 × 10–23 –0.05 0.42
150 2010 0.52 1.3 × 10–25 –0.04 0.42

Fig. 1. (A and B) The power function of the relative
yield of total biomass (above- plus belowground, 0
to 20 or 0 to 30 cm depth, respectively) in relation to
planted species richness, across years in the BioCON
and BioDIV experiments. Relative yield was defined
by dividing plot-level values by the mean mono-
culture yield, averaged across all monoculture plots
within each year. Details of all fits are provided in
Table 1. (C and D) The exponent of the power
function in relation to experimental years.
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over, the relationship became increasingly non-
saturating (17) over the range of species richness
levels used (Fig. 1 and Table 1). The increasing
linearity is illustrated first by comparing the
Akaike Information Criterion (AIC) values of
saturating functions (Michaelis-Menten) with
decelerating functions. The saturating function
is the best model by AIC only in the first few
years in BioCON and is a poorer model than
decelerating functions (especially the power
function) in most years late in both experiments
(table S1). Second, the exponent from the pow-
er function fits (“b”) increased over time in both
experiments (Fig. 1 and Table 1), with increases
from 0 toward 1, indicating that the diversity-
productivity relationship is becoming more linear
and less strongly decelerating. Consequently, we
also observed increases over time for estimates of
the number of planted species required to yield
90% of the biomass in 16 species plots (the num-
ber of species required to generate most of the
diversity effect on biomass in a given year) (fig.
S2). Results were similar when we considered
aboveground or belowground biomass separate-
ly, when we considered absolute biomass, and
when we considered observed richness instead
of planted richness (figs. S3 to S5 and tables S2
and S3).

Because the statistical fits for the biodiversity
functions are imperfect at establishing the precise
shape of the relations, directly comparing across
species-richness treatments illuminates the role

Table 1. Model fit statistics for the power function describing the relationship between rel-
ative biomass yield (Y ) and planted richness ( S). Relative biomass yield was defined by di-
viding plot-level values by the mean monoculture yield, averaged across all monoculture plots within
each year.

Study DF Year
Power: ln(Y) = a + b × ln(S)

R2 P value a b

BioCON 71 1998 0.24 1.3 × 10–5 –0.20 0.29
72 1999 0.24 9.0 × 10–6 –0.30 0.37
72 2000 0.19 1.2 × 10–4 –0.18 0.26
71 2001 0.34 5.1 × 10–8 –0.18 0.39
72 2002 0.38 5.9 × 10–9 –0.14 0.34
72 2003 0.34 6.3 × 10–8 –0.23 0.36
70 2004 0.23 2.3 × 10–5 –0.46 0.45
70 2005 0.40 2.9 × 10–9 –0.18 0.38
71 2006 0.34 6.1 × 10–8 –0.28 0.44
64 2007 0.35 1.4 × 10–7 –0.17 0.33
64 2008 0.39 1.7 × 10–8 –0.30 0.46
64 2009 0.31 1.2 × 10–6 –0.41 0.45
63 2010 0.39 2.2 × 10–8 –0.36 0.51

BioDIV 150 1997 0.08 3.3 × 10–4 –0.07 0.17
150 1998 0.24 2.3 × 10–10 0.06 0.28
150 1999 0.31 1.2 × 10–13 0.02 0.32
150 2000 0.37 6.5 × 10–17 –0.03 0.35
150 2001 0.39 8.3 × 10–18 –0.02 0.35
150 2002 0.43 6.3 × 10–20 0.01 0.36
150 2003 0.38 2.1 × 10–17 –0.02 0.33
150 2004 0.45 5.6 × 10–21 0.01 0.36
150 2006 0.48 2.8 × 10–23 –0.05 0.42
150 2010 0.52 1.3 × 10–25 –0.04 0.42

Fig. 1. (A and B) The power function of the relative
yield of total biomass (above- plus belowground, 0
to 20 or 0 to 30 cm depth, respectively) in relation to
planted species richness, across years in the BioCON
and BioDIV experiments. Relative yield was defined
by dividing plot-level values by the mean mono-
culture yield, averaged across all monoculture plots
within each year. Details of all fits are provided in
Table 1. (C and D) The exponent of the power
function in relation to experimental years.
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over, the relationship became increasingly non-
saturating (17) over the range of species richness
levels used (Fig. 1 and Table 1). The increasing
linearity is illustrated first by comparing the
Akaike Information Criterion (AIC) values of
saturating functions (Michaelis-Menten) with
decelerating functions. The saturating function
is the best model by AIC only in the first few
years in BioCON and is a poorer model than
decelerating functions (especially the power
function) in most years late in both experiments
(table S1). Second, the exponent from the pow-
er function fits (“b”) increased over time in both
experiments (Fig. 1 and Table 1), with increases
from 0 toward 1, indicating that the diversity-
productivity relationship is becoming more linear
and less strongly decelerating. Consequently, we
also observed increases over time for estimates of
the number of planted species required to yield
90% of the biomass in 16 species plots (the num-
ber of species required to generate most of the
diversity effect on biomass in a given year) (fig.
S2). Results were similar when we considered
aboveground or belowground biomass separate-
ly, when we considered absolute biomass, and
when we considered observed richness instead
of planted richness (figs. S3 to S5 and tables S2
and S3).

Because the statistical fits for the biodiversity
functions are imperfect at establishing the precise
shape of the relations, directly comparing across
species-richness treatments illuminates the role

Table 1. Model fit statistics for the power function describing the relationship between rel-
ative biomass yield (Y ) and planted richness ( S). Relative biomass yield was defined by di-
viding plot-level values by the mean monoculture yield, averaged across all monoculture plots within
each year.

Study DF Year
Power: ln(Y) = a + b × ln(S)

R2 P value a b

BioCON 71 1998 0.24 1.3 × 10–5 –0.20 0.29
72 1999 0.24 9.0 × 10–6 –0.30 0.37
72 2000 0.19 1.2 × 10–4 –0.18 0.26
71 2001 0.34 5.1 × 10–8 –0.18 0.39
72 2002 0.38 5.9 × 10–9 –0.14 0.34
72 2003 0.34 6.3 × 10–8 –0.23 0.36
70 2004 0.23 2.3 × 10–5 –0.46 0.45
70 2005 0.40 2.9 × 10–9 –0.18 0.38
71 2006 0.34 6.1 × 10–8 –0.28 0.44
64 2007 0.35 1.4 × 10–7 –0.17 0.33
64 2008 0.39 1.7 × 10–8 –0.30 0.46
64 2009 0.31 1.2 × 10–6 –0.41 0.45
63 2010 0.39 2.2 × 10–8 –0.36 0.51

BioDIV 150 1997 0.08 3.3 × 10–4 –0.07 0.17
150 1998 0.24 2.3 × 10–10 0.06 0.28
150 1999 0.31 1.2 × 10–13 0.02 0.32
150 2000 0.37 6.5 × 10–17 –0.03 0.35
150 2001 0.39 8.3 × 10–18 –0.02 0.35
150 2002 0.43 6.3 × 10–20 0.01 0.36
150 2003 0.38 2.1 × 10–17 –0.02 0.33
150 2004 0.45 5.6 × 10–21 0.01 0.36
150 2006 0.48 2.8 × 10–23 –0.05 0.42
150 2010 0.52 1.3 × 10–25 –0.04 0.42

Fig. 1. (A and B) The power function of the relative
yield of total biomass (above- plus belowground, 0
to 20 or 0 to 30 cm depth, respectively) in relation to
planted species richness, across years in the BioCON
and BioDIV experiments. Relative yield was defined
by dividing plot-level values by the mean mono-
culture yield, averaged across all monoculture plots
within each year. Details of all fits are provided in
Table 1. (C and D) The exponent of the power
function in relation to experimental years.
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Relationship between average annual plot productivity 
and six diversity metrics

Cadotte, Cavender-Bares, Tilman, Oakley 2009
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Spectral diversity also predicts productivity

Schweiger et al, Nature EE 2018

Plant Productivity (g m-2)
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Figure 2 | Spectral profiles, their coefficient of variation, and local maxima of the coefficient of 297 
variation. The range of vector normalized spectra of all species (n = 17) is shown in red. The black line is 298 
the coefficient of variation of vector normalized reflectance values for each spectral band (n = 2,000). The 299 
blue vertical lines indicate five local maxima of the coefficient of variation (at 429 nm, 675 nm, 1451 nm, 300 
1981 nm, and 2360 nm) and the location of known absorption features of chemical leaf traits. 301 
 302 
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Figure 3 | Relationship between spectral diversity and productivity. Aboveground productivity (g m-305 
2) increased with spectral diversity of plant communities calculated from a, species’ mean leaf level 306 
spectra (n = 35, r2 = 0.51, b = 94.92, t33 = 5.90, P < 0.001) and b, 1,000 randomly selected image pixels 307 
per plot acquired by an imaging spectrometer mounted on an automated tram (n = 27, r2 = 0.41, b = 3.81, 308 
t25 = 4.14, P < 0.001). Each point here and in similar subsequent figures represents a single plot in the 309 
Cedar Creek biodiversity experiment.  310 
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Tree	species	richness	was	a	significant	predictor	of	per-tree	
Net	Biodiversity	Effects	(NBE)	on	tree	biomass	after	1	
(orange)	and	2	(blue)	years	of	treatment.	

Grossman	et	al.	2017	Ecology

Forest	and	Biodiversity	Experiment	at	Cedar	Creek



integrating and promoting biological conserva-
tion in forest resource management and forestry
practices—a common goal already shared by in-
tergovernmental organizations such as the Mon-
tréal andHelsinki ProcessWorking Groups. These
findings should facilitate efforts to accurately
forecast future changes in ecosystem services
worldwide, which is a primary goal of IPBES
(11), and provide baseline information necessary
to establish international conservation objectives,
including the United Nations Convention on Bio-
logical Diversity Aichi targets, the United Nations
FrameworkConventiononClimateChangeREDD+
goal, and theUnitedNationsConvention toCombat
Desertification land degradation neutrality goal.
The success of these goals relies on the under-

standing of the intrinsic link between biodiversity
and forest productivity.

Materials and methods
Data collection and standardization

Our current study used ground-sourced forest
measurement data from 45 forest inventories
collected from 44 countries and territories (Fig.
1 and table S1). Themeasurementswere collected
in the field from predesignated sample area units,
i.e., Global Forest Biodiversity permanent sample
plots (hereafter, GFB plots). For the calculation of
primary site productivity, GFB plots can be cat-
egorized into two tiers. Plots designated as “Tier
1” have been measured at two or more points in
time with aminimum time interval betweenmea-

surements of two years ormore (globalmean time
interval is 9 years, see Table 1). “Tier 2” plots were
onlymeasured once, and primary site productivity
can be estimated from known stand age or den-
drochronological records. Overall, our study was
based on 777,126 GFB plots, of which 597,179 (77%)
were Tier 1, and 179,798 (23%) were Tier 2. GFB
plots primarily measured natural forests ranging
from unmanaged to extensively managed forests,
i.e., managed forests with low operating and in-
vestment costs per unit area. Intensively man-
aged forests with harvests exceeding 50 percent
of the stocking volume were excluded from this
study.GFBplots represent forests of variousorigins
(fromnaturally regenerated toplanted) and succes-
sional stages (from stand initiation to old-growth).
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Fig. 3. The estimated global effect of biodiversity on forest productivity
was positive and concave-down, and revealed considerable geospatial var-
iation across forest ecosystems worldwide. (A) Global effect of biodiversity on
forest productivity (red linewith pink bands representing95%confidence interval)
correspondstoaglobalaverageelasticityofsubstitution(q)valueof0.26,withclimatic,
soil, andother plot covariatesbeingaccounted forandkept constant at samplemean.

Relativespecies richness (Š) is in thehorizontal axis, andproductivity (P,m3ha−1 year−1)
is in theverticalaxis(histogramsof thetwovariables on topand right in the logarithm
scale). (B) q represents the strength of the effect of tree diversity on forest produc-
tivity.Spatiallyexplicit valuesofqwereestimatedbyusinguniversal kriging (Materials
andmethods) across the current global forest extent (effect sizes of the estimates
are shown in Fig. 5), whereas blank terrestrial areas were nonforested.
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Influence	of	
biodiversity	on	
productivity

Global forest inventory records indicate biodiversity 
loss would result in declines in forest productivity

In natural forests 
around the globe, 
higher tree species 
richness is linked to 
higher productivity

Liang et al 2016 Science



6.4 million living trees, 10,000 species,  901 forest years

67 sites, 26 countries, >100 partner institutions 

MarineGEO	Sites

ForestGEO	Sites
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The results of the analysis controlling for stem density
were qualitatively similar to the main results, but the posi-
tive relationships were generally weakened (Fig. 3). The
weaker positive relationships at the 0.04 ha grain were evi-
dent in the much smaller mean effect sizes, 0.067 [–0.019,
0.146] for productivity and 0.098 [0.016, 0.179] for bio-
mass, meaning that a doubling of species richness corre-
sponds to an average 5% increase in productivity and 7%
increase in biomass (Fig. 3a,b). Controlling for stem density
moved the mean effect size in a negative direction at the
0.25 ha spatial grain but not the 1 ha spatial grain for both
the richness–productivity (–0.220 [–0.541, 0.049] at 0.25 ha
and –0.317 [–0.767, 0.040] at 1 ha) and richness–biomass
(–0.214 [–0.437, 0.001] at 0.25 ha and –0.327 [–0.915,
0.227] at 1 ha) relationships. The relationship of stem den-
sity itself to biomass and productivity was generally posi-
tive but saturating at the 0.04 ha spatial grain and variable
at the larger spatial grains (Figs S7–S12 in Supporting
Information).
The productivity–biomass relationships were generally posi-

tive, and in contrast to the results involving species richness,
the effect sizes were fairly robust to increasing spatial grain
and to the inclusion of stem density in the model (Fig. 4).
The effect sizes before controlling for stem density were
0.371 [0.244, 0.485], 0.322 [0.218, 0.432] and 0.409 [0.210,
0.638] at the 0.04, 0.25 and 1 ha spatial scales, respectively,

and 0.251 [0.138, 0.352], 0.273 [0.171, 0.377] and 0.350
[0.177, 0.552] after controlling for stem density (Fig. 4).
Cross-site comparisons of mean productivity, mean biomass

and mean 1 ha species richness showed that all three vari-
ables were positively correlated across sites with no strong
evidence of unimodal relationships (Figs S13–S15 and Table
S4 in Supporting Information), although the number of data
points (sites) was low, and therefore, the statistical power to
resolve cross-site patterns was also low.

Discussion

Our results highlight the fundamental role of scale (Waide
et al. 1999; Mittelbach et al. 2001; Rahbek 2005) in deter-
mining the observed relationship between species richness
and ecosystem function in forests. Previous studies on this
topic in forests have found positive relationships between spe-
cies richness and ecosystem function (as measured by produc-
tivity or biomass; Vil!a et al. 2007; Ruiz-Jaen & Potvin 2010;
Paquette & Messier 2011; Zhang, Chen & Reich 2012), but
our analyses show that mean effect sizes may become zero or
even negative at spatial grains larger than those that have typ-
ically been considered before (< 0.1 ha). Moreover, a propor-
tion of the positive effect at small spatial grains may be
attributable to local variation in stem density rather than
classic species sampling effects, niche complementarity and
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(a) (b)

(c) (d)

(e) (f)Fig. 2. Observed relationships of tree species
richness to coarse woody productivity (CWP;
panels a, c, e) and above-ground biomass
(AGB; panels b, d, f) at the study sites at
three spatial grains (0.04 ha, 0.25 ha, 1 ha).
Points show the quadrat data (number of
points for each site = site area/spatial grain;
see Table 1), lines show regressions for
individual sites, with green indicating
positive slopes, red negative slopes and black
slopes not significantly different from zero.
Axis scales are logarithmic.
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At small spatial grains (0.04 ha) 
species richness was correlated 
with productivity 

At larger spatial grains (0.25 ha, 
1 ha), results were mixed, with 
negative relationships becoming 
more common. 



breaks that may arise indirectly from environmental fluctua-
tions. Among our 12 sites, environmental fluctuations driving
tree population changes were in some cases conspicuous and
have well-established causes. Typhoon Imbudo passed over
the Palanan plot in 2003, and the census following showed
high recruitment of several light-demanding species. In that
census interval, the distribution of population fluctuations was
skewed heavily toward the positive, with some species exhibit-
ing population growth rates of r = 14% per year. However,
while some species recruited well, many others did not, and
some even declined in abundance: A typhoon does not lead to
a uniform response across species, but a highly variable
response. At Huai Kha Khaeng in Thailand, ground fires dri-
ven by the El Ni~no–Southern Oscillation (ENSO) burned
through much of the plot in 1997–1998 near the end of the
first census interval, promoting a recruitment pulse of fast-
growing species and near complete loss of some fire-sensitive
species (Baker et al. 2008). Other conspicuous fluctuations in
populations were unexpected, but clearly attributable to exter-
nal drivers. At BCI, a drought during the 1983 ENSO event
caused high mortality in a few species, and the former canopy
dominant Poulsenia armata suffered a 50% population loss
over the following decade (Condit et al. 1996; Feeley et al.
2011). In the Mudumalai plot, four large fires (> 80% plot
area burnt) during the first two census intervals resulted in
high mortality primarily in the small-sized individuals,
whereas elephant herbivory resulted in large population
declines of favoured browse plants of the order Malvales
(Sukumar et al. 2005; Suresh et al. 2010).
Several of the sites, in contrast, have witnessed no conspicu-

ous fluctuations in climate or herbivory, particularly Pasoh
and the three African sites. Nevertheless, tree species at these
sites still exhibited large fluctuations in population size with a
statistical signature of environmental variance (i.e. scaling of
squared abundance changes as the second power of abun-
dance; Fig. 1). Although these forests were more stable than
the fire- and typhoon-impacted forests (Table 2, Fig. 1), there
must still be environmental drivers that favoured some species
over others during the time intervals considered. Weather var-
iation is a likely candidate. Identifying specific weather-related
mechanisms and other weaker drivers may, however, be diffi-
cult in tree communities because of the long generation times
and the lack of data on past environmental conditions. The
median age of 1 cm DBH stems on BCI has been estimated at
16.6 years with a maximum of about 80 years (Hubbell 1998),
so the new recruits in any given forest census (stems that have
reached 1 cm DBH in the last !5 years) reflect not just the
environmental conditions of the current year or decade but
instead a weighted integral over decades of variable environ-
mental conditions. Acquiring data on environmental condi-
tions over such timescales and developing statistical
techniques to integrate over them in conjunction with the tree
abundance data is challenging. It is worth noting that in
annual plant communities, where much biodiversity theory
has been developed, the shorter generation times reduce the
time lags in species-environment interactions (Chesson &
Huntly 1989) and make such analyses more tractable.
Our analysis also provides a potential answer to the long-

standing ecological question of why some forests around the
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Figure 3 Scaling of abundance changes within species for 466 species that
occurred at two or more of our Asian sites. The vertical axis indicates the
estimated exponent of the relationship between squared abundance
fluctuations ((N2 " N1)

2) and initial abundance (N1) within species using
different minimum abundance thresholds (N*; horizontal axis). The
shaded region shows 95% confidence intervals on the exponent estimates.
For low minimum abundance thresholds the exponent is close to 1.0,
indicating a predominance of demographic variance. For high minimum
abundance thresholds the exponent is close to 2.0, indicating a
predominance of environmental variance.

100 200 500 1000

1e
–1

2
1e

–0
9

1e
–0

6
1e

–0
3

Site species richness (S) 

V
ar

ia
nc

e 
in

 r
el

at
iv

e 
ab

un
da

nc
e 

ch
an

ge
 (v

ar
(x

2 
– 

x 1
)) x1 = 10 6 10 5

x1 = 10 5 10 4

x1 = 10 4 10 3

x1 = 10 3 10 2

x1 = 10 2 10 1

x1 10 1
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Abundance fluctuations were smaller at species-rich 
sites, consistent with the idea that stable 

environmental conditions promote higher diversity 
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Botanic	gardens	of	
the	Americas

Arnold ArboretumIPBES Americas Regional Assessment

Generate	canopy	spectral	profiles for	the	plant	tree	of	life…



Global Botanical Gardens

• Maintain 16,976 of the 60,065 known tree 
species (4370 genera) 
--> 28% 

• And include 240 of the 267 total plant families 
with trees
--> 90% 



  

TreeDivNetForest biodiversity and 
ecosystem functioning

1 116 247

230

25 experiments  ⚫ 45 sites⚫6 continents

43 partners 120 publications

Tree Diversity Network www.treedivnet.ugent.be⚫

Tree species

Planted trees
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> 4,000 plots             ~ 800 ha                > 1,050,000 planted trees



6.4 million living trees, 10,000 species,  901 forest years

67 sites, 26 countries, >100 partner institutions 

MarineGEO	Sites

ForestGEO	Sites

Courtesy	of	Lauren	Krizel



Barro Colorado	Island	50	ha	plot	ortho-image	
mosaic generated	from	UAV-collected	photos	

(every	point	seen	from	above)

Courtesy:	Helene	Muller-Landau



Digitization	(manual)	of	all	overstory crowns	(>50	m2)	in	the	BCI	50	ha	plot	

Barro Colorado	Island,	Panama



Linking individual crowns to tagged tree stems in the field 

Field	work	by	Carrie	Tribble,	Pablo	Ramos,	
Paulino Villareal,	and	Areli	Benito



Thank you




