Issues of Scale in Biodiversity Science

John A. Gamon, Ran Wang, Hamed Gholizadeh

R=Fluorescence, G=Chlorophyll, B=PRI

What does "Remote Sensing of Biodiversity" mean, exactly?

- What kind of remote sensing?
- What *aspect* of biodiversity?
 - Alpha diversity?
 - Beta diversity?
 - Functional diversity? (e.g. plant traits)
 - Genetic diversity?
- What is our goal?
 - Monitor or map biodiversity?
 - Understand functional links?

Types of Biodiversity Sampling Methods Found in the Literature

- Habitat Mapping (e.g. vegetation classification)
 - Species Distribution Mapping (based on dominant species)
 - Index-based methods (e.g. NDVI, variation in NDVI...)
 - Spectral Diversity:
 - Plant trait variability
 - Spectral information content

Types of Biodiversity Sampling Methods Found in the Literature

- Habitat Mapping (e.g. vegetation classification)
 - Species Distribution Mapping (based on dominant species)
 - Index-based methods (e.g. NDVI, variation in NDVI...)
 - Spectral Diversity:
 - Plant trait variability
 - Spectral information content

All theses methods are highly scale dependent.

Scale Dependence:

- Biological scale genes and molecules to ecosystems and biomes
- Spatial Scale plot size, grain size (pixel size and extent)
- Temporal Scale e.g. seasonal variation
- Spectral Scale spectral range and resolution

Scale dependence in Remote Sensing: *Spatial Scale*

Sampling resolution of spectral measurements span 5-6 orders of magnitude

Scale dependence in Remote Sensing: *Temporal scale* – e.g. seasonal variation

Scale Dependence in Remote Sensing: *Spectral Scale*

Scale dependence - *Biological Scale*

Species-Area Curves:

Biodiversity definitions:

Alpha Diversity Beta Diversity Gamma Diversity Phylogenetic diversity Species richness Species evenness Functional Diversity

Biodiversity definitions and sampling methods also vary with scale.

Spectral (optical) diversity – measures some ill-defined combination of these

https://en.wikipedia.org/wiki/Species%E2%80%93area_relationship

Challenges to Remote Sensing of Biodiversity:

- Both remote sensing and biodiversity are very scale-dependent (spatial, temporal and spectral scale matters)
- Sampling scales are often mismatched (often by several orders of magnitude).
- "Biodiversity" is often not defined (fundamental definitions and related sampling assumptions vary widely).

→ Biodiversity definitions and sampling scale need attention!
→ Well-designed experiments & field campaigns are needed

Key Questions:

- Can we *really* detect biodiversity with remote sensing? (Yes, but we need to clarify definitions and scale)
- What are we really detecting? (perhaps not biodiversity per se, but a proxy)
- Can spectral information content (spectral diversity) provide a useful metric of diversity? ("optical diversity" or information content)

Project Overview: Dimensions of Biodiversity

Figure: J. Cavender-Bares

Study sites:

Cedar Creek (U. Minnesota)

Figure: Cedar Creek Ecosystem Science Reserve Figure: C. Helzer Cedar Creek, MN Ottawa Sain Toronto Wood River, NE United Mates Nev of America Wash

Wood River (Nature Conservancy)

Methods Used:

- 1. <u>Experiments</u>: *multi-scale* field campaigns, combining proximal and airborne remote sensing (optical range VIS-NIR):
 - Spectral diversity (information content) at different scales (pixel sizes and plot sizes)
 - coefficient of variation (CV)
 - spectral angle mapper (SAM)
 - Alpha diversity of vegetation
 - Species richness
 - Species evenness
- 2. <u>Modeling</u>: synthetic landscapes with varying composition, grain size

Methods:

U. Nebraska-Lincoln Airborne Observatory ("CHAMP")

Wang et al. 2018 Ecological Applications

Effects of Spatial Scale on Spectral Diversity

10 cm pixels

0.5 m pixels

1 mm pixels

Wang et al. 2018 Ecological Applications

Scale Dependence of Spectral Diversity Cedar Creek

10

Species richness

5

0

20

15

Wang et al. 2018 Ecological Applications

Experiment 2: Wood River, Nebraska

New fields:

Low diversity

Medium diversity

Figure: C. Helzer

High diversity

Experimental Design

Gholizadeh et al. (in review)

Spectral diversity-biodiversity is strongly scale-dependent

Gholizadeh et al. (in review)

Comparison of Cedar Creek to Wood River

Image: H. Gholizadeh

Possible explanations for different results:

- 1) Different study designs (manipulations, plot size, # of species)
- 2) Alpha vs. Beta Diversity

Normalized scale dependence

Sample size = pixel size/plot size (# of pixels per plot)

Optical Diversity variation across a complex landscape (Cedar Creek)

Effects of spatial scale are evident in patterns of optical diversity Scale dependence varies across landscape units (forests vs. grasslands) "Edges" (e.g. ecotones) have large impacts on the "diversity signal" Modeled landscapes simulating different simulated crown sizes, pixel sizes and spatial extents

8 x 8

16 x 16

32 x 32

Images: Ran Wang

128 x 128

A few words about "plant traits"

- Often measured at the leaf scale (1 mm-1cm). Most airborne sensors measure at <u>+</u>1m, and global sensors at <u>+</u>1 km pixels (2-6 orders of magnitude difference!)
- Legitimate questions remain about whether we can really detect leaf traits from remote sensing
 - Knyazakhin et al. 2012, PNAS vs.
 - Townsend et al. 2013, PNAS
- Effects of temporal scale (phenology) are poorly understood (Chavana-Bryant et al. 2017)

Trait detection is scale dependent

Sampling methods affects spectral diversity (and trait distribution)

Wang et al. 2018 Ecological Applications

Designing the "ideal experiment"

- Attention to resolution (pixel size) and extent Sample Plot
 - Sample both biodiversity and spectral diversity across scales (express as a continuum)
 - Match pixel size to crown size

Pixel

size \rightarrow

- Consider full phenology
- Conduct similar experiments across multiple ecosystems and biomes

What would a "biodiversity observatory" look like?

- Network linking remote sensing to ground observations
- Standardized protocols & informatics
- Explicit consideration of scale

