
Unlocking a New Era in Biodiversity Science Keck Institute for Space Studies, Pasadena, CA, October 1 - 5, 2018

Dreaming of 2026

Woody Turner Earth Science Division NASA Headquarters

October 2, 2018

And It's Not Just NASA

eesa **ESA-DEVELOPED** EARTH OBSERVATION MISSIONS 2015 2010 Meteosat 10 🤷 🥎 MetOn-Meteosat 11 (MSG) (MSG) 2020 Sentinel-2 MetOp-C Sentinel-1A Proba-1 MetOp-SG-B1 Proba-V CryoSat ntinel-1B Sentinel-28 Sentinel-5A MetOp-SG-A Swarm Sentinel-3B Sentinel-3/ ATG-I Sentinel-5 Aeolus 2025 Seosat Sentinel-6A Sentinel-2C TG-I2 EarthCARE Sentinel-4A MTG-S1 Sentinel-30 Sentinel-10 Sentinel-2D Sentinel-3D Sentinel-58 MetOp-SG-A2 Sentinel-6B FLEX MTG-I3 2030 Sentinel-48 MTG-S2 Science Copernicus Meteorology

Need for Vigilance

Free satellite data key to conservation

Biodiversity is in crisis, with extinction rates orders of magnitude higher than background levels (1). Underfunded conservationists need to target their limited resources effectively. Over the past decade, satellite remote sensing has revolutionized our ability to monitor biodiversity globally. and is now used routinely, especially by nongovernmental organizations, to detect changes, set priorities, and target conservation action. The U.S. Geological Survey (USGS) unlocked high-resolution Landsat data in 2008 (2), making data available online (3), and the Copernicus program from the European Commission subsequently made their data available as well (4). These resources have been instrumental to biodiversity research. Assessments of environmental changes such as deforestation are now readily available. The current spatial and spectral resolution of Landsat

INSIGHTS | LETTERS

data make them appropriate to many conservation applications, and although they are not always ideal, pragmatic researchers with limited resources use them regularly. Conservationists have already called for these data to remain free (5). Consequently, the news that USGS may charge for data (6) is deeply troubling.

USGS has recently convened an advisory committee to determine whether users would be prepared to pay for increased spectral and spatial resolution images (7). Requiring users to pay would put these images beyond the reach of conservationists. It would halt time-series analyses that have been useful in monitoring the effects of climate change, land-cover change, and ocean surfaces, likely hindering the achievement of the Sustainable Development Goals (8). We urge the USGS to reconsider their position and continue to provide data from the Landsat program freely to all users.

G. M. Buchanan,^{1*} A. E. Beresford,¹ M. Hebblewhite,² F. J. Escobedo,³ H. M. De Klerk,⁴ P. F. Donald,⁵ P. Escribano,⁶ L.P. Koh,⁷ J. Martínez-López,⁸ N. Pettorelli,⁹ A. K. Skidmore,¹⁰ Z. Szantoi,⁴ K. Tabor,⁷ M. Wegmann,¹¹ S. Wich¹²

(Science 2018, 361:139-140)

2018 NRC Decadal Survey Observing System Priorities

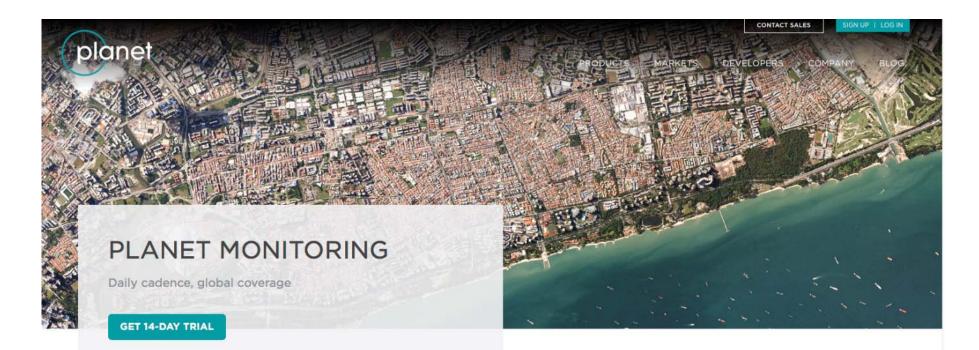
TARGETED OBSERVABLE	SCIENCE/APPLICATIONS SUMMARY	CANDIDATE MEASUREMENT APPROACH	Designated	Explorer	Incubation	Trace Gases	Vertical profiles of ozone and tra gases (including water vapor, CO, methane, and N_2O) globally and v high spatial resolution	NO ₂ , vith	UV/IR/microwave limb/nadir sounding and UV/IR solar/stellar occultation		x	
Aerosols	Aerosol properties, aerosol vertical profiles, and cloud properties to understand their direct and indirect offort and limit and air quality.	Backscatter lidar and multi- channel/multi- angle/polarization imaging	×			Snow Depth & Snow Water Equivalent	Snow depth and snow water equincluding high spatial resolution i mountain areas	n	lidar**		×	
&	effects on climate and air quality Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes	radiometer flown together on the same platform Radar(s), with multi-frequency passive microwave and sub-mm radiometer	x			Terrestrial Ecosystem Structure	3D structure of terrestrial ecosys including forest canopy and abov ground biomass and changes in a ground carbon stock from proces such as deforestation & forest degradation	e bove	Lidar**		×	
Precipitation Mass Change	Large-scale Earth dynamics measured by the changing mass distribution within and between the Earth's atmosphere, oceans, ground water, and ice sheets	measurement of gravity anomaly	x			Atmospheric Winds	3D winds in troposphere/PBL for transport of pollutants/carbon/ad and water vapor, wind energy, cl dynamics and convection, and lar scale circulation	erosol oud	Active sensing (lidar, radar, scatterometer); passive imagery or radiometry-based atmos. motion vectors (AMVs) tracking;		x	x
Surface Biology & Geology	Earth surface geology and biology, ground/water temperature, snow reflectivity, active geologic processes, vegetation traits and algal biomass	Hyperspectral imagery in the visible and shortwave infrared, multi- or hyperspectral imagery in the thermal IR	×				Diurnal 3D PBL thermodynamic properties and 2D PBL structure understand the impact of PBL pro		or lidar** Microwave, hyperspectral IR sounder(s) (e.g., in geo or small sat constellation), GPS radio			
	earthquakes and landslides to ice sheets	radiometer Spacecraft ranging measurement of gravity anomaly Hyperspectral imagery in the visible and shortwave infrared, multi- or hyperspectral imagery in the thermal IR Literferometric Synthetic Aperture Radar (InSAR) with ionospheric correction Multispectral short wave IR and thermal IR sounders; or lidar** of Lidar**				Planetary Boundary Layer	on weather and AQ through high vertica and temporal profiling of PBL temperature, moisture and heights.					×
Greenhouse Gases				x		Surface	High-resolution global topograpi		DIAL lidar; and lidar** for PBL height Radar; or lidar**			
Ice Elevation	Global ice characterization including elevation change of land ice to assess sea level contributions and freeboard height of sea ice to assess sea ice/ocean/atmosphere interaction	Lidar**		x		Topography Interference & Vegetation Ice topography, vegetation structure, and shallow water bathymetry ** Could potentially be addressed by a multi-functio Targeted Obset			-	ore	of t	x the
Ocean	Coincident high-accuracy currents and vector winds to assess air-sea	Radar scatterometer					Other ESAS 2017 Targeted Observables, not Allocated to a Flight Program Element					
Surface Winds &	momentum exchange and to infer upwelling, upper ocean mixing, and sea-			×		i quare Diogeochemistry			Radiance Intercalibration Sea Surface Salinity			
Currents	ice drift.					-		Soil Moisture				

(National Academies of Sciences, Engineering, and Medicine. 2018. *Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space*. Washington, DC: The National Academies Press. https://doi.org.10.17226/24938.)

5

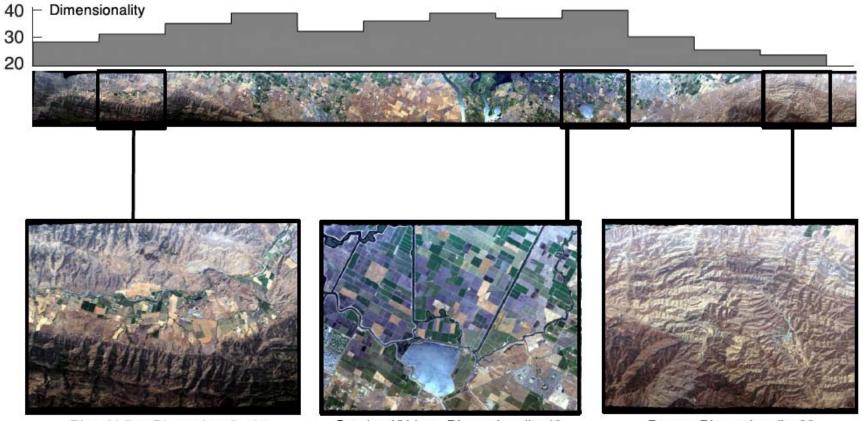
H4 Imaging (And Then Some)

EBV class	EBV				На	bitat type				
		Wetland vegetation	В	enthic communitie	15					
		Mangrove/ salt marsh	Seagrass	Macroalgae	Coral	Phytoplankton	HAB	Fish, Zoo- plankton	Apex predator	Legend
Genetic composition	Population genetic diversity									Unproven
Species	Distribution									Demonstrate limited case
populations	Abundance									Routine us
	Size/vertical distribution									Habitat mod required
Species traits	Pigments							NA	NA	
	Phenology									
Community composition	Taxonomic diversity									
Ecosystem structure	Functional type									
	Fragmentation/ heterogeneity					Routine use for open				
Ecosystem function	Net primary production					ocean		NA	NA	
	Net ecosystem production						NA	NA	NA	


(F. Muller-Karger et al. Ecological Applications 2018)

H4 High Spatial and Temporal: Landsat and Sentinel-2

H4 High Spatial and Temporal: Planet and Other Commercials



GLOBAL MONITORING, DAILY INSIGHT

With 175+ satellites in orbit, Planet is able to image anywhere on Earth daily at 3 meter and 72 centimeter resolution. Monitor your areas of interest, discover patterns, and deliver timely insights.

(https://www.planet.com/products/monitoring/)

Flightline Segments

River Valley, Dimensionality 31

Cropland/Urban, Dimensionality 40

Barren, Dimensionality 23

 CALEDNA

 California Environomental DNA

 Ogether, we can help protect California's biodiversity.

 Join Us

SIGN IN

Collect, Analyze, and Protect

California has thousands of species found nowhere else in the world, but over 70% of its natural habitat has been lost.

CALeDNA aims to address problems in biodiversity monitoring by pairing volunteer community scientists with University of California researchers to collect soil samples from across California. By analyzing the environmental DNA (eDNA) from the soil samples, we can assess the biodiversity of microbes, fungi, plants and animals.

NRS Map

(https://ucnrs.org/find-a-reserve/)

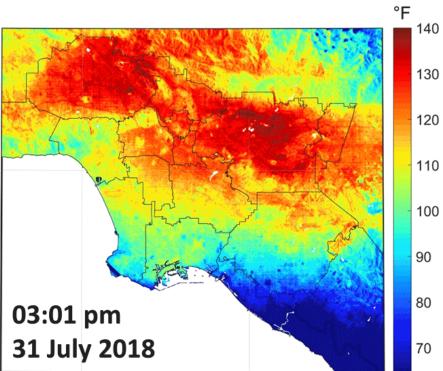
1,174 Samples collected

27,088 Organisms identified

748 Registered users

Open Biodiversity

We openly share our methods and n conservation.


Anyone can view the field data from labs.

(http://www.ucedna.com)

Thermal!

Active Remote Sensing for 3D and Night Vision

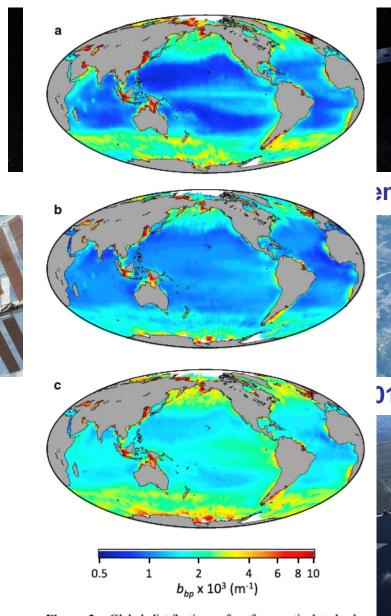
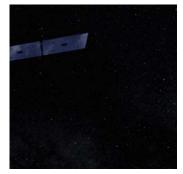
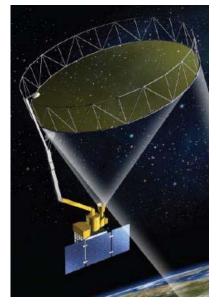



Figure 2. Global distributions of surface particulate backscattering coefficients (b_{bp}) . (a) CALIOP-based b_{bp} . (b) MODIS-based b_{bp} from the GSM algorithm. (c) MODIS-based b_{bp} from the QAA algorithm. Data in each panel are climatological annual averages for the 2006–2012 period. All data have been standardized to 2° latitude × 2° longitude pixels.

>mber 15)


)18)

Following the Water Actively—and Passively

Global Precipitation Mission

Soil Moisture Active Passive

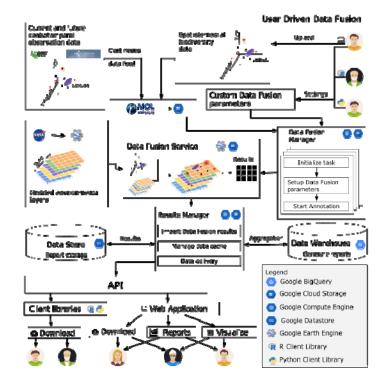
Gravity Recovery and Climate Experiment Follow On

Surface Water and Ocean Topography (2021 launch)

Remotely Sensing People

In Situ Integration Imperative

YaleNews EXPLORE TOPICS .


Space-based tracker to give scientists a beyond-bird's-eye-view of wildlife

By Kendall Teare AUGUST 14, 2018

Data Fusion with Map of Life

(Source: W. Jetz, R. Guralnick, A. Wilson AIST-16-0092 1st Annual Review 8/10/2018)

Lidar!

TARGETED OBSERVABLE	SCIENCE/APPLICATIONS SUMMARY	CANDIDATE MEASUREMENT APPROACH	Designated	Explorer Institution	Trace Gases	Vertical profiles of ozone and tra gases (including water vapor, CO, methane, and N ₂ O) globally and v high spatial resolution	NO ₂ , vith	UV/IR/microwave limb/nadir sounding and UV/IR solar/stellar occultation		x	
Aerosols	Aerosol properties, aerosol vertical profiles, and cloud properties to understand their direct and indirect	Backscatter lidar and multi- channel/multi- angle/polarization imaging	x			Snow depth and snow water equincluding high spatial resolution in mountain areas		Radar (Ka/Ku band) altimeter; or lidar**		x	
&	effects on climate and air quality Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes	radiometer flown together on the same platform Radar(s), with multi-frequency passive microwave and sub-mm radiometer	×		Structure	3D structure of terrestrial ecosys including forest canopy and above ground biomass and changes in a ground carbon stock from proces such as deforestation & forest degradation	e bove	Lidar**		x	
Precipitation Mass Change	Large-scale Earth dynamics measured	Spacecraft ranging measurement of gravity anomaly	x		Atmospheric	3D winds in troposphere/PBL for transport of pollutants/carbon/ae and water vapor, wind energy, clo dynamics and convection, and lar scale circulation	erosol oud	Active sensing (lidar, radar, scatterometer); passive imagery or radiometry-based atmos. motion vectors (AMVs) tracking;		×	×
Goology &	Earth surface geology and biology, ground/water temperature, snow reflectivity, active geologic processes, vegetation traits and algal biomass	Hyperspectral imagery in the visible and shortwave infrared, multi- or hyperspectral imagery in the thermal IR	x			Diurnal 3D PBL thermodynamic properties and 2D PBL structure to understand the impact of PBL process		or lidar** Microwave, hyperspectral IR sounder(s) (e.g., in geo or small s at constellation), GPS radio			
Surface Deformation	Earth surface dynamics from earthquakes and landslides to ice sheets and permafrost	ionospheric correction	x		Planetary Boundary Layer	on weather and AQ through hig and temporal profiling of PBL temperature, moisture and heig	vertical				×
	CO₂ and methane fluxes and trends, global and regional with quantification of point sources and identification of source types	Multispectral short wave IR and thermal IR sounders; or lidar**		×	Surface	High-resolution global topograph		DIAL lidar; and lidar** for PBL height Radar; or lidar**			
Ice Elevation	Global ice characterization including elevation change of land ice to assess sea level contributions and freeboard height of sea ice to assess sea ice/ocean/atmosphere interaction	Lidar**		x	Topography including bare surface land topography & Vegetation ice topography, vegetation structure, and shallow water bathymetry ** Could potentially be addressed by a multi-function lida Targeted Observab			-	ore	of	x the
Ocean	Coincident high-accuracy currents and vector winds to assess air-sea	Radar scatterometer			Other ESAS 2017 Targeted Observables, not Allocated to a Flight Program Element						
Surface Winds &	momentum exchange and to infer upwelling, upper ocean mixing, and sea-			x	i quarie Diogeoenenioù y			ance Intercalibration Surface Salinity			
Currents	ice drift.						Sea Sui Soil Mo	-			

(National Academies of Sciences, Engineering, and Medicine. 2018. *Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space*. Washington, DC: The National Academies Press. https://doi.org.10.17226/24938.)

17

Engaging Space Agencies for Biodiversity

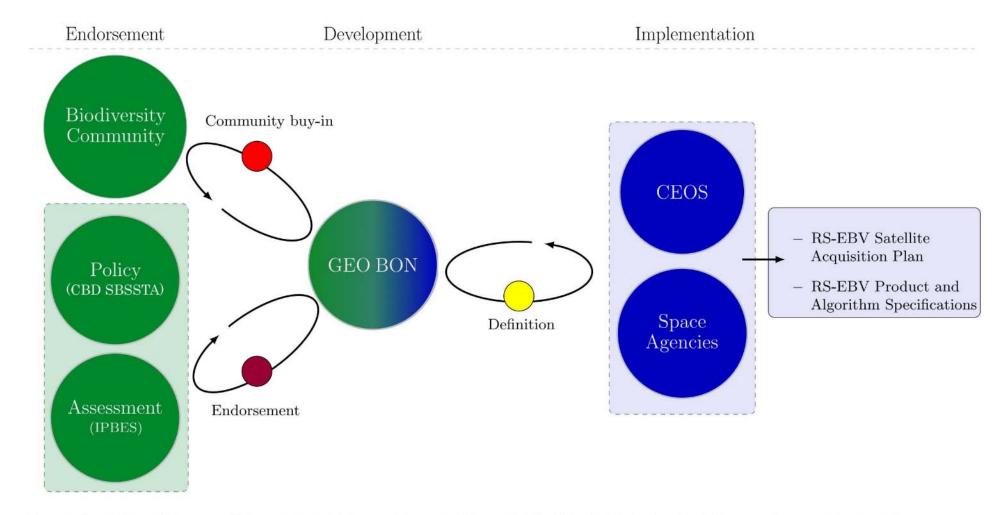


Figure 1. Outline of the overall process by which remotely sensed Essential Biodiversity Variables should be developed and matured.

(Paganini et al. 2016, Remote Sensing in Ecology and Conservation)

Goals and Next Steps

- Goal 3 for this KISS Study Program:
 - "Develop an implementation plan/roadmap for an observing system architecture that integrates across multiple satellite remote sensing and *in situ* datasets to provide cruciallyneeded biodiversity information for both plants and animals."
- Need plan to engage this wealth of information, including:
 - Targeting specific—by name—mission science teams for proposals and membership
 - Considering Earth Venture (Suborbital, Instrument, and Mission) proposal opportunities
 - NASA scoping studies are wrapping up
 - Suggesting how NASA and NSF could jointly promote this goal
 - Promoting interdisciplinary lidar study(-ies)
 - Strengthening ties to GEO BON through Essential Biodiversity Variable (EBV) development and assembling BON in a Box tools
 - Build upon GEO BON, Don't reinvent it
 - Translating satellite needs for biodiversity observations into requirements for space agencies to address through CEOS
- Keep phylogeny central to any effort = Speak to biologists and ecologists in the language of evolution so they understand us
- Study how life scales
- Bring the diversity of life through the 21st century intact

Thank You