

Kristina Hogstrom

Jet Propulsion Laboratory, California Institute of Technology

Keck Exploring Once-in-a-Lifetime Targets Short Course

10/29/18

Outline

- General specifications and resources
- Subsystem capabilities
- Current and near-future landscape
- Far future landscape

General Specifications and Resources

Definition of "Small"

- Shift in launch cost
 - Can launch to LEO or GEO as secondary spacecraft up to 300 kg
 - Constellations fit many spacecraft in a single launch
- Shift in risk tolerance
 - Shorter development times, reduced testing, and commercial or lower-TRL parts
 - Redundancy in numbers for constellations
- Set cut-off at 180 kg per NASA's Small Spacecraft Technology Program, but mass is really a proxy for other delimiters

Two classes of SmallSats

CubeSats (< 20 kg)

- Form factor constrained by deployer
- Limited by volume rather than mass
- Plug-and-play commercial parts available
- Traditionally high-risk "unclassified" missions with 3-7 year lifetimes

Micro/minisats (< 180 kg)

- No set form factor, just volume envelope
- Can be limited by either mass or volume
- Can accommodate more traditional space-qualified components with longer lifetimes (if they fit!)

SPACEFLIGHT

Launch Opportunities Beyond LEO

Secondary launch to GEO or Transfer Orbit

- Three GTO launches on Spaceflight, Inc.'s schedule for 2018/19¹
 - Uses EELV Secondary Payload Adapter (ESPA) ring
 - Up to 300 kg, 1.15 m x 1 m x 1.25 m
- Com-sat manufacturer SSL advertises 6-8 launches per year²
 - Uses Payload Orbital Delivery System (PODS),
 - Up to 150 kg, 1 m x 1 m x 0.6 m
- Use own propellant or commercial kick stage to access deep space

Secondary launch with interplanetary mission or primary launch of constellation

- Constraints are mission specific, depending on primary payload and launch vehicle
- Lowest cost option is currently to bring a commercial deployer

 CubeSat form factor

Performance Envelopes Mass and Volume

Payload mass and volume be traded for spacecraft capability... but you can't have it all!

Performance Envelopes Power

Wide range depending on whether deployable arrays are used. State-of-the-art in deployable arrays come from MMA's HaWK product line.

Performance Envelopes Data

CubeSat avionics are typically single string and not rad-hard (< 10 krad total dose)

Performance Envelopes Pointing and Propulsion

	3U	6U	12U	Mid-ESPA	ESPA
Pointing	.004°-10°	.004°-3°	.004°01°	.004°15°	.004°03°
accuracy	Typical: 1º	Typical: 1º	Typical: .01°	Typical: .007°	Typical: .005°
Delta-V	~ 10 m/s	~ 40 m/s	< 200 m/s	< 1 km/s	> 1 km/s

Again, can always trade payload for capability!

Reliability and Cost

CubeSats can be reliable platforms for science missions – with time and money

Subsystem-Specific Capabilities

ACDS, Propulsion, and Telecom

ACDS for SmallSats

BCT XACT 0.015 Nms integrated ACDS Volume: 10 cm x 10 cm x 5 cm (0.5U) Used on ASTERIA and MarCO

BCT 8 Nms single reaction wheel Volume 19 cm x 19 cm x 8 cm

Honeywell 12 Nms single reaction wheel Volume 30 cm x 30 cm x 15 cm

Propulsion for SmallSats

Chemical	Cold Gas	Flootric	
		Electric	Solar sails
	I _{sp} : 65 s-70 s Thrust: 10 mN – 10 N	I _{sp} : 700 s – 3000 s Thrust: very small	Thrust: ~mN
 Many high-heritage and reliable hydrazine systems used on large missions Hydrazine is generally a nogo for secondary launches "Green" propellant options on the horizon 	 Compact, simple, and most common option for CubeSats Low I_{sp} compared to chemical options 	 Mature technology for larger systems, but miniaturization in work Good choice for high ΔV applications and long-term station-keeping 	 Demonstrated from CubeSats LightSail) Propulsion demon upcoming mon upcoming mosteering

Phase4 Rider plasma system with 160 m/s ΔV for 12-kg CubeSat

- d deployment s (NanoSail,
- monstrations missions
- pellant for

LightSail 32 m² solar sail

VACCO's Lunar Flashlight green propulsion system 240 m/s ΔV for 14-kg CubeSat

VACCO's MaRCO propulsion system 30 m/s ΔV for 6U CubeSat

Telecom for SmallSats

Iris CubeSat X-band DSN-compatible transponder + amplifier 4 W RF output, 35 W DC input, 1.2 kg, 0.5U

Reflectarray antenna on MarCO (6U, X-band, 8 kbps from Mars) and ISARA (3U, Ka-band, 100 Mbps from LEO)

X/Ka-band Small Deep Space Transponder (SDST) Needs an amplifier, customizable to mission requirements 3.2 kg, 18 cm x 17 cm x 12 cm (~4U)

0.5-m deployable Ka-band HGA on Raincube fit in 1.5U volume

The Current and Near-Future Landscape

Near-term proposals or launches of SmallSat science missions beyond LEO

Mars Cube One (MarCO)

- Two CubeSats (A and B) launched with the InSight Mars lander
- First interplanetary CubeSats
- 6U form factor with Reflectarray antenna, IRIS radio, \sim 30 m/s ΔV
- Will monitor InSight's landing and act as a communications relay

Hayabusa2

- Main spacecraft carried four tiny hopping rovers to asteroid Ryugu
- Rover-1A, Rover 1B, and Rover-2
 - ~1 kg, solar powered, equipped with cameras, thermometers, and accelerometers
- MASCOT
 - ~10 kg, battery powered, equipped with camera, IR spectrometer, magnetometer, and radiometer

Sun Radio Interferometer Space Experiment (SunRISE)

- Proposed to the NASA Small Explorer (SMEX) call
- Constellation of six 6U CubeSats brought to near-GEO with rideshare
- Formation flying to form 10 km synthetic aperture
- Observe solar radio bursts that can't be observed from the ground due to ionic absorption

Planetary Science Deep Space SmallSat Studies (PSDS3)

- 19 studies awarded to develop concepts that explore Venus, the Moon, asteroids, Mars, Jupiter, and Uranus
- Two CubeSat constellations
 - Ross (formerly CAESAR): a dozen 12U CubeSats each targeting a different Near-Earth asteroid
 - Bi-sat Observations of the Lunar Atmosphere above Swirls (BOLAS): two 12U tethered CubeSats characterize lunar hydrogen cycle from both low and high altitude

Projections for the next 15 years

A look back...

- CubeSats and SmallSats have come a long way in the last 15 years
- Launches have been largely commercial or experimental
- However, great science is being done in LEO and the first steps beyond LEO have been taken

A look forward!

- Many science missions beyond LEO just on the horizon
- Bigger launch vehicles → more room for secondary payloads
- Stronger partnerships with government and commercial companies
- Value in distributed networks and constellations will be realized

Acknowledgements

- Annie Marinan
- Steve Matousek
- Hayden Burgoyne
- Alan Didion
- David Sternberg
- Chi-Wung Lau
- Thaddeus Voss

References

https://digitalcommons.usu.edu/smallsat/2018/Keynote-2018/
http://www.spaceflight.com/wp-content/uploads/2015/05/SPUG
http://sslmda.com/pods/pods_brochure.pdf
http://bluecanyontech.com/wp-content/uploads/2018/07/DataSheet_XBSpacecraft_13.pdf
http://deepspaceindustries.com/xplorer/
http://mediakit.sncorp.com/mediastore/document/SN_50_REDUCED.pdf
http://www.sst-us.com/downloads/datasheets/us_platform_sstl-12.pdf
https://n-avionics.com/platforms/3u-cubesat-platform-plt3/
https://n-avionics.com/platforms/6u-cubesat-bus-m6p/
https://rsdo.gsfc.nasa.gov/catalog.html
https://www.adcolemai.com/3u-cubesat-mai-3000
https://www.adcolemai.com/6u-cubesat-mai-6000
https://www.adcolemai.com/magicbus-smallsat-1
https://www.clyde.space/what-we-do/platforms
https://www.isispace.nl/wp-content/uploads/2018/07/ISIS-6U-CubeSat-Brochure.pdf
https://www.utias-sfl.net/?page_id=89
https://www.yorkspacesystems.com/platform/
https://mmadesignllc.com/specs-table/
https://ieeexplore.ieee.org/abstract/document/8396755
http://bluecanyontech.com/xact/
ftp://apollo.ssl.berkeley.edu/pub/Pointing_Studies/Hardware/Honeywell%20Reaction%20Wheels.pdf
https://www.cubesat-propulsion.com/lunar-flashlight-propulsion-system/
https://www.cubesat-propulsion.com/jpl-marco-micro-propulsion-system/
http://www.phasefour.io/rider/
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4286&context=smallsat
https://www.cubesat-propulsion.com/nea-scout-propulsion-system/
https://www.researchgate.net/profile/Rogan_Shimmin/publication/289527097_Small_Spacecraft_State_of_the_Art_Report_2015/links/5756ec8508ae04a1b6b67265/Small-
Spacecraft-State-of-the-Art-Report-2015.pdf
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3454&context=smallsat
https://www.space.com/29578-lightsail-solar-sail-spacecraft-glitch.html

References

15.1	nttp://gdmissionsystems.com/en/products/communications/spaceborne-communications/tracking-telemetry-and-control/small-deep-space-transponder
15.2	https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7696473)
15.3	nttps://www.jpl.nasa.gov/cubesat/missions/isara.php
15.4	nttps://www.jpl.nasa.gov/cubesat/missions/iris.php
15.5	nttp://mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop2014/Duncan_Iris_Deep_Space_Transponder.pdf
17.1	nttps://www.jpl.nasa.gov/CubeSat/missions/marco.php
17.2	nttps://mars.nasa.gov/news/8338/a-pale-blue-dot-as-seen-by-a-cubesat/
18.1	nttps://www.space.com/40161-hayabusa2.html
18.2	nttps://en.wikipedia.org/wiki/Hayabusa2
19.1	nttps://en.wikipedia.org/wiki/Exploration_Mission-1
20.1	nttp://www.planetary.org/blogs/jason-davis/nea-scout-deployment-test.html
	nttps://www.jpl.nasa.gov/cubesat/missions/neascout.php
21.1	https://www.nasa.gov/centers/ames/engineering/projects/biosentinel.html
22.1	nttps://ieeexplore.ieee.org/document/7943789
23.1	nttp://www.unoosa.org/documents/pdf/psa/activities/2017/SouthAfrica/slides/Presentation21.pdf
24.1	nttp://lunahmap.asu.edu/
25.1	nttps://www.jpl.nasa.gov/news/news.php?feature=6791
25.2	nttps://www.nasa.gov/feature/goddard/2017/nasa-studies-tethered-cubesat-mission-to-study-lunar-swirls
25.3	nttps://www.hou.usra.edu/meetings/smallsat2018/pdf/12_Clark.pdf
25.4	nttps://www.lpi.usra.edu/sbag/meetings/jun2017/presentations/Mercer.pdf
27.1	nttps://www.nanosats.eu/img/fig/Nanosats_years_forecasts_2018-08-12_large.png