THE SCIENCE OF LONG-PERIOD COMETS AND INTERSTELLAR OBJECTS
SMD Vision & Voyages (2013-2022) & the Astrobiology Roadmap

How do Habitable Worlds Form?

With thousands of exoplanetary systems known, ours, so far is unique in its architecture with a habitable planet in the habitable zone. Water is the most abundant condensable molecule so solar composition gas should condense water-rich planets, yet the inner solar system is dry.

- Planetesimals gain chemical fingerprints from the disk
- Planetesimals were then scattered by the giant planets
- Did planetesimals drive inward from beyond the snow line to form terrestrial planets?
- Meteorites (cosmochemistry) gives us clues to what happened
- Volatiles in small primitive bodies are the best connection to protoplanetary disks and how habitable worlds are built.
Formation Details

Disk Chemistry Models
- Ionization at surface
- Thermal structure, snow lines
- Turbulence & accretion
- Chemical reactions
- Ion-molecule reactions / isotope effects
- Interaction with the dust

Solar System Dynamics
- Planetesimal growth over 20 orders of magnitude in size in a few Myr
- Streaming instabilities can concentrate pebbles
- In-situ formation vs giant planet migration
- Very different planetesimal scattering

References

DeMeo & Carry (2014), Nature 505, 629.
Comet science pre- & post-Rosetta

LPCs – A long historical interest
• Long period comets account for all of the “great comets” observed historically
• LPCs are more active at larger distances
• Evolution or formation difference?
Recent Great Comets

- C/2013 US10 Mag 6, M. Jager
- C/2006 P1 McNaught; Mag -7
- Halley 1986, Mag 2.6
- West, 1976, Mag -3
- C/1995 O1 Hale-Bopp; Mag -1, A. Dima
- C/2012 S1 ISON; Mag -3, W. Skorupa
- 17P/Holmes, Mag 1.0; 2007 I. Eder
- Hyakutake, 1996; Mag -2
- C/2011 W3 Lovejoy Mag -6
- C/2009 P1 Garradd, Mag 6, J. Nassr
- Ikeya-Seki, 1957, Mag -10
Pre-Mission Knowledge: Earth-based

Volatile and activity

- Activity controlled by $\text{H}_2\text{O} \& \text{CO}$, other species trapped in amorphous ice
- Evidence of different chemical reservoirs \rightarrow not correlated with dynamics (optical and IR data)
- Suggestion that some comets have more volatile ices: CO, CO$_2$
- Isotopes H, C, N, O for a few to a couple dozen comets only

Pre-Mission Knowledge: Earth-based

<table>
<thead>
<tr>
<th>Isotopic ratio</th>
<th>Species</th>
<th>Value</th>
<th>Comet</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/H</td>
<td>H₂O</td>
<td>(3.06 ± 0.34) 10⁻⁴</td>
<td>1P/Halley</td>
<td>Eberhardt et al. (1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.08±0.38/−0.53) 10⁻⁴</td>
<td>1P/Halley</td>
<td>Balsiger, Altwegg & Geiss (1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.9 ± 1.0) 10⁻⁴</td>
<td>C/1996 B2 (Hyakutake)</td>
<td>Bockelée-Morvan et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.3 ± 0.8) 10⁻⁴</td>
<td>C/1995 O1(Hale-Bopp)</td>
<td>Meier et al. (1998b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.5 ± 0.7) 10⁻⁴</td>
<td>C/2002 T7 (LINEAR)</td>
<td>Hutsemékers et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>HCN</td>
<td>(4.6 ± 1.4) 10⁻⁴</td>
<td>C/2001 Q4 (NEAT)</td>
<td>Weaver et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.0 ± 1.4) 10⁻⁴</td>
<td>8P/Tuttle</td>
<td>Villanueva et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.3 ± 0.4) 10⁻³</td>
<td>C/1995 O1(Hale-Bopp)</td>
<td>Meier et al. (1998a)</td>
</tr>
<tr>
<td>¹⁴N/¹⁵N</td>
<td>CN</td>
<td>147.8 ± 5.7</td>
<td>18 comets</td>
<td>Manfroid et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>HCN</td>
<td>205 ± 70</td>
<td>C/1995 O1(Hale-Bopp)</td>
<td>Bockelée-Morvan et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>HCN</td>
<td>139 ± 26</td>
<td>17P/Holmes</td>
<td>Bockelée-Morvan et al. (2008)</td>
</tr>
<tr>
<td>¹²C/¹³C</td>
<td>C₂</td>
<td>93 ± 10</td>
<td>4 OC comets</td>
<td>Wyckoff et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>CN</td>
<td>91.0 ± 3.6</td>
<td>18 comets</td>
<td>Manfroid et al. 2009</td>
</tr>
<tr>
<td></td>
<td>HCN</td>
<td>111 ± 12</td>
<td>C/1995 O1(Hale-Bopp)</td>
<td>Jewitt et al. (1997)</td>
</tr>
<tr>
<td></td>
<td>HCN</td>
<td>114 ± 26</td>
<td>17P/Holmes</td>
<td>Bockelée-Morvan et al. (2008)</td>
</tr>
<tr>
<td>¹⁶O/¹⁸O</td>
<td>H₂O</td>
<td>518 ± 45</td>
<td>1P/Halley</td>
<td>Balsiger, Altwegg & Geiss (1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>470 ± 40</td>
<td>1P/Halley</td>
<td>Eberhardt et al. (1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>520 ± 25</td>
<td>4 OC comets</td>
<td>Biver et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>425 ± 55</td>
<td>C/2002 T7 (LINEAR)</td>
<td>Hutsemékers et al. (2008)</td>
</tr>
<tr>
<td>³²S/³⁴S</td>
<td>S⁺</td>
<td>23 ± 6</td>
<td>1P/Halley</td>
<td>Altwegg (1996)</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>27 ± 3</td>
<td>C/1995 O1(Hale-Bopp)</td>
<td>Jewitt et al. (1997)</td>
</tr>
<tr>
<td></td>
<td>H₂S</td>
<td>17 ± 4</td>
<td>C/1995 O1(Hale-Bopp)</td>
<td>Crovisier et al. (2004a)</td>
</tr>
</tbody>
</table>

Mumma & Charnley (2011), ARAA 49, 471. C, O, S are terrestrial, N is depleted 2x, H enriched.
Pre-Mission Knowledge: Earth-based

Nucleus and Dust

- Short period comet nucleus sizes consistent with collisional population; small ones (sub-km) missing
 - Upper limits for 5 dynamical new comets from HST
 - Measurements (WISE) for 8 LPCs
- Very low albedos 2-6%, little variation
- Dust: amorphous olivine, pyroxene, crystalline olivine
- Low density (< 1000 kg/m³)
 - Non gravitational motion, Giotto, SL9, Rotation, Chiron exopause: 100-200 kg/m³

Data from: Bauer (2015), Fernandez (2013)

Missions Pre-Rosetta

ICE: Giacobini Zinner
- L: Aug 12, 1978; E: Sep 11, 1985
- Fly through plasma tail

Giotto (+ Russia, Japan): Comet Halley
- L: July 2, 1985; E: Mar 14, 1986
- Science: Proved solid nucleus; organic dust (CHON); volatiles: 80% H$_2$O, 10% CO$_2$

Deep Space 1: 19P/Borrelly
- L: Oct 4, 1998; E: Sep 22, 2001 (Test space technologies)
- Science: 1st hint of smooth plateaus; No direct evidence of H$_2$O ice

Stardust - 1st sample return
- Science: Comets dust \rightarrow migration in early solar system

Deep Impact (EPOXI, NExT)
- L: Jan 12, 2005, E: Jul 4, 2005 (1st Active experiment)
- Science: Comets are good insulators; Little surface ice; New ideas about formation; cryovolcanos
Rosetta Results - Volatiles

- Little surface ice exposure
- Prebiotic materials detected
- Noble gases –
 - \(\text{Ar/Kr and Kr/Xe lower than solar (formed very cold)} \)
 - Measurements not precise enough to distinguish between SS reservoirs
 - Xe required an exotic pre-solar component
- Nitrogen \((\text{N}_2) / \text{CO} \) – \(25\pm9 \times \) depletion from protosolar
- D/H – enriched; \textit{this comet} didn’t deliver Earth’s water
- Abundant super volatiles, don’t see solar nebula chemistry – Comet has remained cold \(\rightarrow \) interstellar signature?

\textbf{Clear primordial signature preserved. High precision isotope measurements will be the key to understanding what this means with respect to formation}
Initial Observations — Matched disk chemistry models

Herschel measurement of 103P — Revise disk chemistry models

Rosetta — “we have to re-think where oceans came from”

Comets formed over a wide range of distances; disk dynamics has scrambled the signature — one isotope isn’t enough to understand origins.
Rosetta (& other Mission) Results - Nucleus

- **Dust**
 - 1P – CHON, 81P – nebular mixing, 9P – nebular processing, hydration
 - 67P – organics, compounds needed to make sugars

- **Albedo**
 - Very low (0.02-0.06) – organic rich
 - Small variations (icy regions brighter, bluer)

- **Nucleus Density (kg/m³) – Low**
 - 67P: 532±7, 9P: 450; 19P: 180-300; 81P: 600-800

- **Porosity & Strength**
 - Strength
 - SL9: 3-270 Pa
 - Rosetta: Overhangs: 3-30 Pa; Hard substrate: kPa-MPa
 - Porosity
 - 9P: 88%
 - 67P: 75-85%

 *Dark, organic rich surfaces
 Low densities suggest highly porous → primitive
 Sizes consistent with collisional fragments*
Where Do We Stand after Rosetta?

Rosetta is the most ambitious and productive comet mission to date
- “The findings at 67P are similar to what we see on 81P and 9P, but at higher resolution”
- “Comets have heritage from their formation, but it is a really mixed reservoir”

Findings
- Interior structure relatively uniform
- Rich array of pre-biotic chemical species
- Comets may represent primordial planetesimals (density, porosity, low T ices)
- Comets form from a wide range of distances
- New insight into how comets work

Questions
- What is primordial and what is the effect of insolation? (How do comets work?)
- How and where do comets form?
- What role do comets play in bringing volatiles to the inner solar system – i.e. Earth?
LPC vs SPC

Discovery stats on LPCs

- Big surveys – routinely 3 yrs pre-perihelion, sometimes >6 yrs
- LSST brings this ~ 10 yrs

Differences between LPC and SPCs

- Only the LPCs are CO rich, both classes have CO$_2$
- Sublimation from CO or CO$_2$ from sub surface \rightarrow large debris
- We are likely sampling a different part our Solar System’s primordial disk
PANSTARRS1 Survey discovers ~inactive LPC

- Faint tail, consistent with H₂O sublimation
- Spectrum consistent with S-type asteroids
- May have formed near snowline, ejected to Oort cloud early in SS history

We may be seeing fresh “preserved” Earth building material
We may be seeing fresh "preserved" Earth building material

New Types of LPOs – The Manxes
10/19 – Discovered by PS1 \rightarrow P10Ee5V

10/18 – Pre-discovery images found in PS1 data
 ◦ Follow up ESA ground station – data rejected, large e
 ◦ Classified as an Earth-orbit crossing asteroid

10/20 – Catalina Sky Survey data \rightarrow short-period comet

10/22 – CFHT observations: orbit is hyperbolic: $e = 1.188$

10/24 – MPEC 2017-U181 posted a name: C/2017 U1

10/26 – MPEC 2017-U183 – named A/2017 U1
1837 – Passed inside 1000 au
Jan 18, 2017 – inside 5.2 au
Aug 10, 2017 – inside 1.0 au
Sep 9, 2017 – perihelion q = 0.255 au
Oct 11, 2017 – outside 1.0 au
Oct 14, 2017 – close Earth approach Δ = 0.162 au

Morning object Feb 1, 2017 mag 30
July 29, mag 25.0, r=1.28 au
Aug 12, mag 24.4, r=0.93 au → solar conj.
Oct 2, mag 23.7, r=0.79 au
Feb 3, 2018, mag 28.6, r=3.5 au → solar conj

May 3, 2018 outside 5.2 au
Jun 2022 – 30 au
Feb 2024 – 39 au
Dec 2025 – 50 au
Jul 2038 – 121 au
2196 – 1000 au
The Timeline

Observations
- ~65 hrs on 4-10 m telescopes (1 wk)
- ~30 hrs on Spitzer, 9 HST orbits

Results
- 53 papers arXiv, 37 published

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 14</td>
<td>HST observations</td>
</tr>
<tr>
<td>Nov 13</td>
<td>Effective obs window</td>
</tr>
<tr>
<td>Dec 13</td>
<td></td>
</tr>
<tr>
<td>Jan 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>← Sep 9 Perihelion</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18-PS1 Precovery</td>
<td>19-PS1 Discovery</td>
<td>20-Astrometry</td>
</tr>
<tr>
<td>22- Hyperbolic orbit confirmed</td>
<td>23-DD prop VLT, GS; VLT Approve</td>
<td>24- GS prop Approved; MPEC orbit announce</td>
<td>25-VLT Obs, HST prop submit, UKIRT DD award; ★</td>
<td>26- VLT, GS obs; HST Approve; PR ★</td>
<td>27- GS, CFHT, UKIRT, Keck obs</td>
<td>28- UKIRT obs ★</td>
</tr>
<tr>
<td>29 – Hawaiian name</td>
<td>30- ★</td>
<td>31- Nature paper submit</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6-Ref. Rpt. IAU Name OK</td>
<td>7</td>
<td>8-Resubmit paper</td>
<td>9</td>
<td>10-Paper in production</td>
<td>11</td>
</tr>
</tbody>
</table>

Our Nature paper was accepted Nov. 13 published online on Nov. 20
Results from the international campaign

Brightness is related to size (and how reflective)
- Average radius $102 \pm 4\,\text{m}$ (assuming albedo 0.04)

Dust & Activity Limits
- $< 1\,\text{kg}\,\mu\text{m}$-sized dust within 750 km from nucleus

Surface composition
- Red (23±3% / 100 nm) – “comet-like”

Excited Rotation
- $8.67 \pm 0.34\,\text{h}$ – precesses around L vector
- Long-lived – damping time 10^9-$10^{10}\,\text{yr}$

Astrometric orbit fit
- Requires an acceleration away from sun r^{-2}

Spitzer non-detection
- Likely higher albedo, no CO, CO2

Which Way Home and Gaia DR2

<table>
<thead>
<tr>
<th>Star</th>
<th>Type</th>
<th>Enc Dist</th>
<th>Enc vel</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIP 3757</td>
<td>M2.5 dwarf</td>
<td>0.6 pc</td>
<td>24.7 km/s</td>
<td>1.0 Myr</td>
</tr>
<tr>
<td>HD 292249</td>
<td>G5 dwarf</td>
<td>1.6 pc</td>
<td>10.7 km/s</td>
<td>3.8 Myr</td>
</tr>
<tr>
<td>Home 3</td>
<td></td>
<td>1.0 pc</td>
<td>14.3 km/s</td>
<td>6.3 Myr</td>
</tr>
<tr>
<td>Home 4</td>
<td></td>
<td>0.9 pc</td>
<td>18.0 km/s</td>
<td>1.2 Myr</td>
</tr>
</tbody>
</table>

Which way home?
- Non-grav asymptote to trace back the path
- Giant planet – difficult because of high ejection velocities
- Binary system more likely to match velocities
- None of the 4 systems have known exoplanets or are known binaries

The ISO Population
- Generated random (direction, v) ISO population
- Simulated the detection of synthetic ISOs using PS1, Mt. Lemmon, and Catalina sky surveys

Science From Long Period Objects

<table>
<thead>
<tr>
<th>Long Period Comets</th>
<th>Manxes</th>
<th>ISOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bulk physical properties</td>
<td>1. Surface composition</td>
<td>1. Basic physical properties</td>
</tr>
<tr>
<td>4. Dust composition</td>
<td></td>
<td>4. Isotopes</td>
</tr>
<tr>
<td>5. Noble gases</td>
<td></td>
<td>5. Are these the same as our SS planetesimals?</td>
</tr>
</tbody>
</table>

Items 1, 5 require in-situ

Going after some of the ices seen in Rosetta N2, O2 requires in-situ

Item 1 from the ground (want statistics)

Items 2,3 requires in situ

Items 1-3 – From Earth

Items 4-6 – in-situ

Detailed view of the surface – affects of travel through ISM
Rapid growth of Jupiter’s Core

- Distinct W and Mo isotopic composition between carbonaceous chondrites and ordinary chondrites → spatially separated
- Jupiter core after 1 Myr opens disk gap
- Groups remained separated for 3-4 Myr

Gap in disk controls what arrives in inner solar system

- Stops inward drift of particles from the outer disk
- As Jupiter grows it can scatter planetesimals as it grows and / or migrates in the disk
