View from the Inside: The Solar System's Particle Environment Christina M. S. Cohen

Caltech

Space Observations • NASA's Heliophysics System Observatory (HSO)

Space Observations NOAA's Observatory System

dscovr 👛 🚫

Space Observation • Remote Sensing

- - Coronal holes, active regions, flares, **Coronal Mass Ejections (CMEs)**

SDO

SDO/HMI @ 617.3m

LASCO

Space Observation • Remote Sensing

- - Coronal holes, active regions, flares, **Coronal Mass Ejections (CMEs)**
 - Solar wind structures shocks

Space Observations

- Remote Sensing
 - Coronal holes, active regions, flares, Coronal Mass Ejections (CMEs)
 - Solar wind structures shocks
 - Open field lines

Radio observations

- Solar wind parameters
 - Shocks, CMEs, CH wind

Solar Energetic Particles (SEPs)

- Solar Energetic Particles (SEPs)
 - Intensities

- Solar Energetic Particles (SEPs)
 - Intensities
 - Spectra

1000

- Solar Energetic Particles (SEPs)
 - Intensities
 - Spectra

Composition

SEP events are hugely variable – what might they depend on?

Acceleration

Transport

Acceleration

- Processes
 - shock acceleration, reconnection

Transport

• Process

Charged particles in magnetized plasma

Acceleration

- Processes
 - shock acceleration, reconnection

• Details

- Conditions
- What is being accelerated
- Escape

Transport

• Process

Charged particles in magnetized plasma

Details

- Scattering turbulence
- Solar wind conditions
- Intervening structures (e.g., CMEs)

Acceleration

- Processes
 - shock acceleration, reconnection

• Details

- Conditions
- What is being accelerated
- Escape

Observations

- Flares
- CMEs
- Radio bursts

Transport

• Process

Charged particles in magnetized plasma

Details

- Scattering turbulence
- Solar wind conditions
- Intervening structures (e.g., CMEs)
- Observations
 Solar wind
 CMEs

5 - ----

North Pacific Ocean

VAI'I

Los Ange

San Diego

(3D) M OBSERVA

You don't know what you can't see

Dark side of the Sun

- You don't know what you can't see
 - Dark side of the Sun illuminated

Observation date: 2011/06/01 23:58:00

- You don't know what you can't see
 - Dark side of the Sun illuminated
 - 2014 lost STEREO-B

- You don't know what you can't see
 - Dark side of the Sun
 - 2014 lost STEREO-B
 - 2023 STEREO-A near Earth

5 - ----

North Pacific Ocean

VAI'I

Los Ange

San Diego

(3D) M OBSERVA

VAI'I

North Pacific Ocean

New Assets

- Parker Solar Probe
 - Closest spacecraft to Sun

New Assets

Parker Solar Probe
Closest spacecraft to Sun

Solar Orbiter
Close to Sun
Out of ecliptic

• SEP events vary over solar cycle

- SEP events vary over solar cycle
- In-situ measurements only over short period

- SEP events vary over solar cycle
- In-situ measurements only over short period
- Biggest events Ground Level Enhancement (GLE) events
 - Interact with atmosphere to create cosmogenic isotopes (CI):
 ¹⁴C, ¹⁰Be, ³⁶CI – long halflives

- SEP events vary over solar cycle
- In-situ measurements only over short period
- Biggest events Ground Level Enhancement (GLE) events
 - Interact with atmosphere to create cosmogenic isotopes (CI):
 ¹⁴C, ¹⁰Be, ³⁶CI long halflives

Tree rings & Ice Cores

- ¹⁴C from tree rings
 - Reconstruction of SSN

Solar Cycle and Pre-S

- ¹⁴C from tree rings
 - Reconstruction of SSN
- & ¹⁰Be/³⁶Cl ice cores
 - 5 extreme events + 3 possibles

Only 16.5% examined

- ¹⁴C from tree rings
 - Reconstruction of SSN
- & ¹⁰Be/³⁶Cl ice cores
 - 5 extreme events + 3 possible
 - All much bigger than space-age
 - No current events have CI sig.
 - Carrington event (1859) also no

Babylonian ©Hisashi Hayakawa 567 BCE

¹⁴C from tree rings
 Reconstruction of SSN

- & ¹⁰Be/³⁶Cl ice cores
 - 5 extreme events + 3 possible
 - All much bigger than space-age
 - No current events have CI sig.
 - Carrington event (1859) also no

Aurora records (maybe help?)

We have a lot of data... but

- Everything varies so 'typical' is hard to define
- Connecting in-situ details to remote sensing details is difficult
 - Lot of unmonitored space
 - Conditions for acceleration / transport not observed
- Space-age may not be typical or even extreme
 What is the limit?
 - What governs the limit?