View from the Inside: The Solar System's Particle Environment

Christina M. S. Cohen

Caltech
Space Observations

- NASA’s Heliophysics System Observatory (HSO)
Space Observations

- NOAA’s Observatory System
Space Observations

- Remote Sensing
- Coronal holes, active regions, flares, Coronal Mass Ejections (CMEs)
Space Observations

• Remote Sensing
 • Coronal holes, active regions, flares, Coronal Mass Ejections (CMEs)
 • Solar wind structures - shocks
Space Observations

- Remote Sensing
 - Coronal holes, active regions, flares, Coronal Mass Ejections (CMEs)
 - Solar wind structures - shocks
 - Open field lines

Radio observations
Space Observations

• In-situ
 • Solar wind parameters
 • Shocks, CMEs, CH wind
Space Observations

• In-situ
 • Solar Energetic Particles (SEPs)
Space Observations

- In-situ
 - Solar Energetic Particles (SEPs)
 - Intensities
Space Observations

- In-situ
 - Solar Energetic Particles (SEPs)
 - Intensities
 - Spectra
Space Observations

- In-situ
 - Solar Energetic Particles (SEPs)
 - Intensities
 - Spectra
 - Composition

![Graphs showing Helium Isotopes and Silicon Fluence](image_url)
SEP Variability

- SEP events are hugely variable – what might they depend on?
SEP Variability

Acceleration

Transport
SEP Variability

Acceleration
- Processes
 - shock acceleration, reconnection

Transport
- Process
 - Charged particles in magnetized plasma
SEP Variability

Acceleration
- **Processes**
 - shock acceleration, reconnection
- **Details**
 - Conditions
 - What is being accelerated
 - Escape

Transport
- **Process**
 - Charged particles in magnetized plasma
- **Details**
 - Scattering – turbulence
 - Solar wind conditions
 - Intervening structures (e.g., CMEs)
SEP Variability

Acceleration
- **Processes**
 - shock acceleration, reconnection
- **Details**
 - Conditions
 - What is being accelerated
 - Escape
- **Observations**
 - Flares
 - CMEs
 - Radio bursts

Transport
- **Process**
 - Charged particles in magnetized plasma
- **Details**
 - Scattering – turbulence
 - Solar wind conditions
 - Intervening structures (e.g., CMEs)
- **Observations**
 - Solar wind
 - CMEs
Observational Limitations
Observational Limitations

- You don’t know what you can’t see
- Dark side of the Sun
Observational Limitations

• You don’t know what you can’t see
• Dark side of the Sun - illuminated
Observational Limitations

• You don’t know what you can’t see
• Dark side of the Sun - illuminated
• 2014 lost STEREO-B
Observational Limitations

• You don’t know what you can’t see
 • Dark side of the Sun
 • 2014 lost STEREO-B
 • 2023 STEREO-A near Earth
New Assets

• Parker Solar Probe
 • Closest spacecraft to Sun

Perihelion: Sept. 27, 2023
4.5 million miles from Sun's surface
New Assets

- Parker Solar Probe
 - Closest spacecraft to Sun

- Solar Orbiter
 - Close to Sun
 - Out of ecliptic
Solar Cycle and Pre-Space-Age

• SEP events vary over solar cycle
Solar Cycle and Pre-Space-Age

- SEP events vary over solar cycle
- In-situ measurements only over short period
Solar Cycle and Pre-Space-Age

• SEP events vary over solar cycle
• In-situ measurements only over short period
• Biggest events – Ground Level Enhancement (GLE) events
 • Interact with atmosphere to create cosmogenic isotopes (CI):
 • 14C, 10Be, 36Cl – long halflives
Solar Cycle and Pre-Space-Age

- SEP events vary over solar cycle
- In-situ measurements only over short period
- Biggest events – Ground Level Enhancement (GLE) events
 - Interact with atmosphere to create cosmogenic isotopes (CI):
 - 14C, 10Be, 36Cl – long halflives

Tree rings & Ice Cores
Solar Cycle and Pre-Space-Age

- 14C from tree rings
- Reconstruction of SSN
Solar Cycle and Pre-Space Age

- 14C from tree rings
- Reconstruction of SSN
- & 10Be/36Cl ice cores
 - 5 extreme events + 3 possibles

Only 16.5% examined
Solar Cycle and Pre-Space-Age

- 14C from tree rings
 - Reconstruction of SSN
- 10Be/36Cl ice cores
 - 5 extreme events + 3 possible
 - All much bigger than space-age
 - No current events have Cl sig.
- Carrington event (1859) also no
Solar Cycle and Pre-Space-Age

- 14C from tree rings
 - Reconstruction of SSN
- & 10Be/36Cl ice cores
 - 5 extreme events + 3 possible
 - All much bigger than space-age
 - No current events have Cl sig.
 - Carrington event (1859) also no
- Aurora records (maybe help?)

Babylonian ©Hisashi Hayakawa 567 BCE

1582 CE
We have a lot of data... but

• Everything varies – so ‘typical’ is hard to define
• Connecting in-situ details to remote sensing details is difficult
 • Lot of unmonitored space
 • Conditions for acceleration / transport not observed
• Space-age may not be typical or even extreme
 • What is the limit?
 • What governs the limit?