Variable-Delay Polarization Modulator (VPM)

Measure linear and circular polarization

Miller et al 2018

VPM Mitigates Cross-Polar Beam Mixing

HWP rotates Q⇔U

[/]		1	0	0	0	[1]
<i>Q</i> '		0	$\cos 2\alpha$	sin 2α	0	Q
U'	=	0	$-\sin 2\alpha$	$\cos 2\alpha$	0	U
[V']		0	0	0	1	[V]

Problem: Sky is bright in Q and U

Any other QU mixing (e.g. cross-pol) can then project bright [QU] foregrounds into false B-mode signal

Modulation in same direction as mixing: Systematics!

VPM rotates $Q \leftrightarrow V$

[/]		1	0	0	0	[/]
Q'		0	$\cos\delta$	0	$sin\delta$	Q
U'	-	0	0	1	0	U
V'		0	$-\sin\delta$	0	$\cos\delta$	$\lfloor v \rfloor$

Solution: Modulate Q↔V instead!

No celestial signal in V, so $Q \leftrightarrow V$ mixing simply reduces amplitude of detected Q modulation.

Efficiency, not systematic error!

Polarization Modulator

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0 -1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.5 31.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 -0,1 -0.2After -0.3HWP 25050 100 150 2000

Modulation

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0 -1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.531.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 -0,1 -0.2After HWP -0.325050 100 150 2000 Modulation

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0 -1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.531.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 -0,1 -0.2After HWP -0.325050 100 150 2000 Modulation **Detector Sample**

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0 -1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.5 31.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 **⊢0.**1 -0.2After HWP -0.325050 100 150 2000 Modulation **Detector Sample**

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0 -1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.531.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 **⊢0**.1 -0.2After -0.3HWP 25050 100 150 2000 Modulation **Detector Sample**

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0-1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.531.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 **⊢0**.1 -0.2After -0.3 HWP 25050 100 150 2000 Modulation **Detector Sample**

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0 -1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.531.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 **⊢0**.1 -0.2After -0.3 HWP 25050 100 150 2000 Modulation **Detector Sample**

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0 -1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.5 31.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 **⊢0**..: -0.2After HWP -0.325050 100 150 2000 Modulation **Detector Sample**

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0 -1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.5 31.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 **−0**.. -0.2After HWP -0.3 25050 100 150 2000 Modulation

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0 -1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.5 31.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 -0. -0.2After HWP -0.3 25050 100 150 2000 Modulation

Cross-Polar Beam Systematics Q U True Wave Plate: Sky Q/U mixing plus Q/U modulation HWP 32.5 Raw Signal (μK) 32.0 -1.0 - 0.5 0.00.5-1.0 -0.5 0.00.51.0 X Position (Deg) X Position (Deg) 31.5 31.0 -10-1010 1030.5 30.0 0.1 Error Signal (μK) 0.0 ⊢0, -0.2After -0.3HWP 25050 100 150 2000 Modulation

Cross-Polar Beam Systematics

VPM Advantages

Minimizes a whole range of systematic errors

- $Q \leftrightarrow V$ modulation distinct from $Q \leftrightarrow U$ ($E \leftrightarrow B$) mixing
- Take advantage of V=0 for sky

Decouples polarization from scan strategy

- Diagonal pixel covariance matrix
- No degradation at large angular separations/low ℓ

Simple cryogenic implementation

- Small linear translation instead of large angular rotation
- Simple cooling path to grating and mirror
- Vary mirror sweep to vary Q/V sampling
- Non-ideal effects are computable from first principles

Plus: Get full-sky map of Stokes V Four orders-of-magnitude improvement!

Yow! Fun With Circular Polarization

VPM Stroke vs Efficiency

