

Staring Imaging Overview

Gazing at the Solar System: Capturing the Evolution of Dunes, Faults, Volcanoes and Ice from Space

KISS Workshop 2014

Joseph Green

Jet Propulsion Laboratory
California Institute of Technology

June 16, 2014

Canonical Remote Sensing Telescopes

Pushbroom Imagers

- Images scene with a linear array of pixels
 - Multiple rows operating in a TDI mode
- Satellite ground track sweep forms 2nd dimension of image
 - Low Earth Orbit (400-1000 km)
 - Ground Track moves at 7 km/s
- Implemented with Several Linear FPAs (panchromatic, mutltispectral)
 - MISR 9 Different 4-band (VNIR) cameras at different viewing angles
 - LANDSAT 7 Bands (VNIR, MWIR and TIR)
 - ASTER 15 bands (VIS, SWIR and TIR)
 - WORLDVIEW 2 8 Bands (Pan + MSI: 400-1000nm)

Canonical Remote Sensing Telescopes

Design Space for Pushbroom Imagers

- Very limited integration time due to projected orbital velocity (7km/s)
- Systems are undersampled to minimize line-of-sight blur and to benefit FOV
 - Q=1.00 for panchromatic imaging (1 sample per resolution element)
 - Q=0.25 for multispectral imaging (To maintain same integration time as Pan)
 - Q=2.00 would be critically sampled (2 samples per resolution element)

$$Q = \lambda * fn / Pixel Pitch$$

- Larger telescope diameter (and/or lower altitude) is needed to make up resolution loss due to low-Q
- Optimized for world mapping applications with area-rate-coverage being a driver
 - Tend to collect single (to few) observations of a target in a pass
 - May take many orbits for a subsequent revisit

Key Problem in *Classic* Remote Sensing

Orthorectification

- High Precision Orthorectification is required to related images between difference observation times and different sensors
- Problem difficulty driven by disparity in viewing geometry against high relief targets
- Further complexity from changes in scene contents between revisists
- When done well, it enables mosaicing, change detection and data fusion processes

Example Courtesy of : Nevin Bryant, JPL

AFIDS (Automatic Fusion of Image Data System)

Nevin A. Bryant, Thomas L. Logan, Albert L. Zobrist, "Precision Automatic Co-Registration Procedures for Spacecraft Sensors", Paper 6550 published in the ASPRS Annual Meeting <u>Proceedings</u>, Denver, CO, May 27,

2004

LEO Orbit Example

Contours shown for 30 and 45 degree Target Elevation Angles from 900km

Staring Imagers

Fixed-Point-Stare Imaging

- Vehicle rotates to maintain a fixed aim point to the ROI during pass
 - Cancels out principal ground motion
- Images are acquired with a a 2-D Focal Plane Array
- Examples
 - Skybox!!
 - Weather Satellites
 - Cameras on the ISS

Staring Imagers

Design Space for Staring Imagers

- Long Integration times possible (up to 1000msec) before residual orbital blur is an issue
 - Primary ground track motion is canceled
 - Secondary dynamic effects of from scene scale and rotation are slow
- System can be well-sampled (Q = 1.5-2.0) while maintaining a good imaging SNR
 - Both Pan and MSI modes can be well sampled
 - Integration time is free to be a variable
 - Not constrained to operate at high sun-elevation angles
- Telescope diameter (and altitude) can be co-optimized with relaxed Q
 - Leads to smaller telescopes flying higher to achieve the same resolution
- Optimized for persistence and continuous angle diversity
 - Collections can have 100's to 1000's of frames

Fixed-Point-Staring Applications

Enables New Processing Capabilities

- Automatic change detection, tracking and flow-measurements
- 3D Visualization (e.g. Anaglyphs but with highly tunable disparity)
- 3D Reconstruction
- Sun/Viewing Angle induced effects (e.g. BRDF estimation)
- Multiframe super-resolution
- High Dynamic Range Imaging
 - Exploit range of integration times to overcome finite FPA Dynamic Range
- Automation of pass-ensemble data is straight forward

Example: High Dynamic Range Imaging

HDRI Study Lead: Sidd Bikannavar, JPL

- •Eight 12-bit exposures synthesize 21-bit image
- •Gradient-domain tonal mapping methods used to display image

Example Scenario

- Simulation of starting imaging from low Earth orbit
 - Ground target (47.0132° N, 122.9241° W)
 - Satellite altitude = 900 km
- Imaging system
 - Panchromatic channel
 - Aperture diameter = 1 m
 - Ground sample distance = 0.5 m
 - Time between images = 1 min
 - Comparable to high-resolution commercial imager (WorldView-1)

Simulations and Subsequent 3D Results by Sam Thurman (formerly of JPL)

Joint Estimation of Scene and Pose

Non-LEO Orbits

GEO Seismic Imager (Previous KISS Study)

PI: David Redding, JPL

- An ISS-assembled 6m telescope for imaging large earthquakes
- Telescope is pointed in response to events detected on the ground
- Stationed in GEO over the Pacific coast of the Americas, GSI would be in position to observe 1 to 4 M_v > 6 earthquakes per year
- GSI data would revolutionize earthquake seismology

- Image frame rate is 2Hz, with 20 min of rolling data storage
- Resolution as good as 1 cm on a 200m grid, over a field of view up to 300 km by 300 km
- Surface deformation movies reveal rupture propagation, enabling correlation of ground motion to subsurface geology
- GSI data could ultimately lead to effective warning capabilities and to improved public management of earthquake risk

March 13, 2012

Remarks

- Staring Imagers provide a unique operational and design space for telescopes
 - Long integration times
 - Large ensemble SNR per pass
 - High level of of continuous angular diversity
 - High-Q maximizes 'processibility' of data
- Must be matched to the right science application
 - Target focused (not world mapping centric)

Nothing in this world can take the place of persistence. Talent will not: nothing is more common than unsuccessful men with talent. Genius will not; unrewarded genius is almost a proverb. Education will not: the world is full of educated derelicts. Persistence and determination alone are omnipotent.

- Calvin Coolidge

Backup

Pushbroom vs Staring

	Pushbroom Imaging	Staring Imaging
Integration Time	0.1 - 3 msec (TDI)	Up to 1000 msecs
Orbital Constraints	Sun-synchronous (10AM-2PM)	Highly relaxed
Focal Plane Technology	1-D Linear Arrays (TDI)	2-D Focal Plane Arrays
Multispectral		
Implementation	Multiple Linear Arrays w/filters	Filter Wheel, Dichroics, Bayer-Filter
Imaging Q	0.25 - 1.0+ (Optimized for Int Time)	Up to 2.0 (Optimized for Resolution)
Aperture Diameter	Large to overcome low-Q	Significantly Smaller (Matched to Q)
Frames per Pass	1 to 10's	100's to 1000's
Field of View	Large (Array + Sweep Limited)	Small (FPA limited)
Targets per Orbit	Many 10's	2 - 10
Persistence on Target	very limited	4-10 minutes
Data Quality Issues	2D image not rigid (sweep/LOS errors)	Time-separation between bands
	Aliasing in Imagery from low-Q	'Grain' in images from high-Q