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The divergent histories of Venus and Earth
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Magellan 
topography

James et al. (2013), JGR-Planets
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The Venera and Vega landers revealed familiar geochemistry

• FeO/MnO ratio suggests a core size similar to Earth’s

• Refractory elements are near CI-chondritic abundances 

• Venus’s mantle has ~8% FeO, similar to Earth’s mantle

Surkov et al. (1986)

Treiman (2007)

Treiman (2007)
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Artist’s impression, © Greg Prichard

“Earth’s sister planet” – We have learned about Earth as a result of our 
investigation of other planets like Venus

And yet, Venus is dramatically different from Earth:

• 870ºF surface temperatures
• Atmospheric pressure is ninety times higher
• Sulfuric acid rain
• Very little water
• Super-rotating atmosphere
• No core dynamo or intrinsic magnetic field
• Quasi-stagnant lid instead of plate tectonics
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Foley & Driscoll (2016), Geochemistry, Geophysics, Geosystems

Blue: volatile flux
Red: heat flux

Earth Venus
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Way & Del Genio (2020), JGR-Planets
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Wayfinding: “It’s seeing where you’re 
going by knowing where you’ve been”.

Disney

Hysteresis (the past history of deformation) 
partially determines a planet’s tectonic regime.

Weller & Lenardic
(2012), GRL
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Conference: Comparative Tectonics and Geodynamics of 
Venus, Earth, and Rocky Exoplanets, Caltech, 2015
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Current state of knowledge (what we know)

Divergent histories Current understanding Static structure Time-variable science



14KISS Next-Generation Planetary Geodesy | June 2, 2021

Price & Suppe (1994), Nature

• Venus was entirely resurfaced—perhaps 
catastrophically—several hundred million 
years ago.

• Venus’s lithosphere has remained 
stagnant and inactive since that 
resurfacing event.

Magellan observed a relatively low number of 
craters, which implies that the surface is young.

Moreover, the distribution of craters is 
statistically indistinguishable from a purely 
random distribution. This yielded two important 
conclusions in the early years of the Magellan 
mission:
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Herrick and Rumpf, 2011

80% of craters have dark floors. 
Are they volcanically flooded?
Stereo topo suggests they are 
shallower, and thus infilled.

Alternative theory: patchwork resurfacing

The debate is far from settled, and there still is some 
indication of a period of elevated resurfacing. 
(Kreslavsky et al., 2015, Icarus)

Randomly distributed regional resurfacing is equally 
capable of explaining the observed crater distribution. 
(Hauck et al., 1998, Icarus)

Stereo topography has shown that many craters are 
shallower than expected, indicating the presence of 
recent volcanic flooding on a local scale. (RIGHT)
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Tesserae – the oldest terrains on Venus?

Venus’s tessera terrains are highly deformed with 
multiple generations of tectonic activity, and this 
roughness contributes to the brightness of the terrains 
in radar imagery.

Tesserae are embayed by volcanic plains, which 
implies a relative age difference.

The origins of the tesserae are still in dispute. One of 
the crucial pieces of desired evidence is the mode of 
oldest tectonic deformation (extension versus 
shortening).

NASA JPL

Alpha
Regio
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What mantle convection models have to add

Venus has a relatively small Center-of-Mass / Center-
of-Figure offset (280 meters). Catastrophic resurfacing 
would produce offsets ~4x larger, so the observed 
offset rules out a catastrophic resurfacing model.

Mantle plumes are remarkably stable over 100 Myr
timescales. Since the effective rigidity of a viscoelastic 
lithosphere weakens over long timescales, it’s 
reasonable to expect that small-scale plumes and drips 
could produce a discernable gravity signal.

(King, 2018, JGR-Planets)
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What mantle convection models have to add

Venus has likely transitioned from a 
mobile lid state (like Earth) to an 
episodic lid and/or a stagnant lid 
sometime in its history.

There should be remnants of Venus’s 
mobile lid preserved today. Ishtar Terra 
may have been formed with thousands 
of kilometers of tectonic convergence.

(Weller & Kiefer, 2020, JGR-Planets)
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Volcanoes
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Volcanoes are active! (more recently than 100,000 years)

Smrekar et al. (2010), Science
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Volcanoes are active! (in the past decade)

ESA
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Volcanoes are active! (as we speak?)

Filiberto et al. (2020), Sci. Adv.
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Chasmata

Venus hosts pervasive chasma structures, 
which indicate tectonic spreading. Large 
chasmata have typical widths of ~200 km.

https://jaolive.weebly.com/research.html Chasma near Gula Mons – NASA/JPL
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Coronae

Corona structures are tectonic 
features characterized by a circular 
shape and likely formed by small-
scale mantle upwellings.

Venus is the only† known planet 
with coronae, but coronae may 
play a crucial role in the tectonic 
evolution of Earth-like planets.

†Uranus’s moon Miranda has circular features by the same 
name that are possibly associated with cryovolcanism.
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Subduction recycles volatiles that stabilize long-term climate. 
Is this how plate tectonics started on Earth? 

Subduction on Venus
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Mobile Lid 
(Plate Tectonics) Stagnant Lid

Heat pipe

?

Lourenço et al. (2018), Nature Geoscience

Cartoons: James 
Tuttle Keane, Io, 
Decadal Survey 
White Paper 2020

Diagram from Sue 
Smrekar, Decadal 
Survey 2021
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Future insights into Venus’ static structure
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Treiman et al. (2016), Icarus

Magellan radar topography

• Since Venus’s atmosphere is opaque at visible 
wavelengths, Magellan used radar travel time to 
measure Venusian topography.

• The brightness of radar backscatter is 
dependent on the material properties 
(permittivity) and the surface roughness.

• The "darkest” regions can trigger an off-nadir 
detection, which can spoof a delayed arrival 
time, which can lead to an underestimation of 
elevation by multiple kilometers.
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McGovern (2021), White paper
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• Does all recent volcanism due to pressure release 
melting come from deep mantle plumes?

• Is lower mantle water (or other volatiles) needed to 
enable melting? Is the upper mantle desiccated?

Volcanism/tectonism link the surface, atmosphere, and interior

Smrekar and Sotin (2012), Icarushttp://dasgupta.rice.edu/

Divergent histories Current understanding Static structure Time-variable science



34KISS Next-Generation Planetary Geodesy | June 2, 2021

Fr
ee

-a
ir 

gr
av

ity

+ + +

– – –
Crust

Mantle

Gravity from 
a cross-section

Divergent histories Current understanding Static structure Time-variable science



35KISS Next-Generation Planetary Geodesy | June 2, 2021

Fr
ee

-a
ir 

gr
av

ity

Crust

Mantle

Gravity from 
a cross-section

Divergent histories Current understanding Static structure Time-variable science



36KISS Next-Generation Planetary Geodesy | June 2, 2021

Fr
ee

-a
ir 

gr
av

ity

Crust

Mantle

Gravity from 
a cross-section

Divergent histories Current understanding Static structure Time-variable science



37KISS Next-Generation Planetary Geodesy | June 2, 2021

Fr
ee

-a
ir 

gr
av

ity

Crust

Low-viscosity 
mantle

High-viscosity 
mantle

Gravity from 
a cross-section

Divergent histories Current understanding Static structure Time-variable science



38KISS Next-Generation Planetary Geodesy | June 2, 2021

Divergent histories Current understanding Static structure Time-variable science

Topography

Geoid

James et al. (2013), JGR-Planets

Venus’s gravity and 
topography are highly 
correlated, even at 
long wavelengths.
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Geoid/topography 
ratios (GTRs)

Atla Regio:
High GTR → mantle plume

Maxwell Montes:
Low GTR → crustal 

compensation
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Two-layered models of internal structure

By assuming that non-isostatic 
stresses are minimized inside 
Venus, it is possible to isolate 
the portion of a gravity field 
arising from mass anomalies 
in the mantle.

• Banerdt et al. (1986)
• Herrick et al. (1992)
• James et al. (2013)
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Crustal thickness maps

James et al. (2013), JGR-Planets
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Mantle hot spots 
correlate with some 
surface features, 
including crustal 
thickness

James et al. (2013), JGR-Planets
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Degree: l = 2 Degree: l =10 Degree: l =90
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Crust Moho Mantle Core

l ≤ 2

2 < l ≤ 30

30 < l ≤ 90

l > 90

Depth sensitivity of gravity by spherical harmonic degree

The lowest spherical harmonic 
degrees are sensitive to the 
entire interior.

High spherical harmonic 
degrees are only sensitive to 
the shallow crust.
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Elastic flexure and the thermal state of the lithosphere

O’Rourke and Smrekar (2018), JGR-PlanetsAnderson and Smrekar (2006), JGR
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Nettleton method of bulk density estimation

Dame and James (2020), LPSC

Science reward:
If it could be demonstrated 
that some tesserae have felsic 
densities, this would be 
evidence for a wetter time in 
Venus’s history.

Bulk density of Haastse-baad
tessera: 2930 ± 800 kg/m3
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Why doesn’t Venus 
have a dynamo?

Constraints on core size & state (and 
thus composition) and mantle viscosity 
can come from:
• High precision Moment of Inertia
• Love numbers 
• Phase lag derived from a high 

resolution gravity field
• Librations (Margot et al., 2021)

What is the size and state of the core?
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Future insights into time-variable processes
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Pressure = (Total column mass) x (gravity acceleration)

Gravity anomaly = 2!G x (Total column mass)

±0.3 bar pressure anomaly = 280 µGal Venus Express VIRTIS

ESA/VIRTIS-VenusX/INAF-
IASF/LESIA-Obs. de Paris

Gravity anomalies from atmospheric pressure variations?
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ESA/AOES

Exotic precipitation?

Treiman et al. (2016), Icarus
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Bills et al. (2020), Icarus
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Predicted anomaly GRACE observation

Han et al. (2006), Journal of Geophysical Research

Co-seismic gravity
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April 2017 Mw 6.5 Botswana earthquake – Albano et al. (2017), Icarus

Co-seismic deformation
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Long Valley caldera inflation
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Tizzani et al. (2009), Geology
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Dike inflation
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Dikes
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Galgana et al. (2013), Icarus
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Active corona 
deformation

Gülcher et al. (2020), Nature Geo.
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Active corona 
deformation

Gülcher et al. (2020), Nature Geo.

Divergent histories Current understanding Static structure Time-variable science



60KISS Next-Generation Planetary Geodesy | June 2, 2021

Summary
Existing gravity data has a typical 
spatial block size of ~270 km, which 
barely misses many compelling 
geologic structures:

• Coronae
• Volcanoes
• Chasmata

Improved resolution would also enable 
techniques for understanding Venus’s 
geology:

• Bulk density estimation
• Elastic lithosphere 

characterization

Altimetry is difficult on Venus due to 
the thick atmosphere, and as a 
result, topographic accuracy and 
resolution are significantly poorer 
than those of other inner solar 
system bodies.

Venus’s surface may plausibly 
experience topographic change at 
the scale of centimeters to meters, 
produced by magma chamber 
inflation, co-seismic deformation, 
and/or new lava flows.
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