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BBC (http://www.bbc.com/news/science-environment-35073297)

The Paris Agreement

- Keep global temperatures "well below" 2.0C (3.6F) above pre-industrial times
and "endeavour to limit" them even more, to 1.5C

- Limit the amount of greenhouse gases emitted by human activity to the same
levels that trees, soil and oceans can absorb naturally, beginning at some
point between 2050 and 2100

- Review each country's contribution to cutting emissions every five years so
they scale up to the challenge

- Rich countries help poorer nations by providing "climate finance" to adapt to
climate change and switch to renewable energy
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Global carbon budget since 1870
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GLoBAL|cARBON Anthropogenic perturbation of the global carbon cycle

Perturbation of the global carbon cycle caused by anthropogenic activities,
global annual average for the decade 2012-2021 (GtCO,/yr)

Fossil CO, AtmosphericCO, Ocean Anthropogenic fluxes
2011-2020 average
+19 GtCO,peryear
® Carbon cycling
D GtCO, peryear
10 @ Stocks
(9-14) (9-12)
Vegetation 290
[
() G V) T Dissolved
Gas reserves S 290 inorganic carbon
‘ Rivers ) s
. Permafrost ‘ and lakes ) ® Organic carbon Ntl)‘?”tne
; i
Oil reserves Soils Coasts Surface o [_\ ota
sediments
o

Coal reserves

IBudget imbalance-1.0 I

©®

The budget imbalance is the difference between the estimated emissions and sinks.
Source: NOAA-ESRL; Friedlingstein et al 2022; Canadell et al 2021 (IPCC AR6 WG1 Chapter 5); Global Carbon Project 2022



http://www.esrl.noaa.gov/gmd/ccgg/trends/
https://doi.org/10.5194/essd-14-4811-2022
https://www.ipcc.ch/report/ar6/wg1/
http://www.globalcarbonproject.org/carbonbudget/
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Remaining carbon budget imbalance

Large and unexplained variability in the global carbon balance caused by uncertainty
and understanding hinder independent verification of reported CO, emissions
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The budget imbalance is the carbon left after adding independent estimates for total emissions, minus the
atmospheric growth rate and estimates for the land and ocean carbon sinks using models constrained by observations
Source: Friedlingstein et al 2022; Global Carbon Project 2022



https://doi.org/10.5194/essd-14-4811-2022
http://www.globalcarbonproject.org/carbonbudget/
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https://doi.org/10.5194/essd-14-4811-2022
http://www.globalcarbonproject.org/carbonbudget/

Summer patterns of net carbon uptake from DGVMs
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Friedlingstein et al. (J Climate, 2006, 2014)

The future of natural carbon sinks

Land Uptake (GtCl/yr)

Ocean Uptake (GtCl/yr)
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Friedlingstein et al. (J Climate, 2006, 2014)

The future of natural carbon sinks
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Challenges

- Existing models cannot leverage quantity and diversity of available data.
Models are limited in the types of observations that can be directly used, the
spatiotemporal scales at which observations can be used to inform model
structure and parameterization, and the ability to represent and track
uncertainties.

- Fluxes cannot be observed directly at most scales. Essential variables needed
to represent GHG fluxes and understand and distinguish the underlying
drivers of change, cannot be directly observed at many scales.

- Increases in model complexity and resolution have outpaced ability to
reconcile model simulations with observational constraints.



Source: NASA GMAO
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