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Big picture

• We know global GHG budgets from the atmosphere, not from 
adding up emissions inventories.  



IPCC, WG1, AR5, Fig 
6.1
Ciais et al., 2013.
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The global carbon 
dioxide (CO2) budget 
from the 5th Assessment 
Report of the IPCC .

How do we know the 
global sum of sources 
and sinks of CO2?

Not by adding up all 
the individual 
sources and sinks!

The uncertainty is (arguably) too large.





These data tell us the net global 
emissions of CO2 and CH4.

The slope of this line 
tells us the net rate 
of CO2 accumulation 
in the earth’s 
atmosphere.

NOAA GML, 
2024Data site:

https://gml.noaa.gov/ccgg/ 

https://gml.noaa.gov/ccgg/


How do we know 
this number so 
well?



Global sources and sinks are highly 
uncertain!



NOAA GML, 
2024Data site:

https://gml.noaa.gov/ccgg/ 

https://gml.noaa.gov/ccgg/


“Top-Down.” The atmosphere tells us 
the global sum of the sources of 
methane.  
▪Measure global atmospheric CH4 – concentration and rate of 
change – very accurately.
▪Estimate atmospheric OH – the primary sink for CH4 – by 
measuring trace gases with known sources.
▪Solve for the global source of CH4 needed to balance the global 
atmospheric budget.

▪You cannot compute the global sum of methane sources with 
any accuracy by adding up the “bottom-up” estimates of the 
individual sources. 

e.g. Dlugocencky et al., 
2003
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The global rate of 
increase leveled 
off…

And then 
started to 
increase 
again…
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The global rate of 
increase leveled 
off…

And then 
started to 
increase 
again…

And we don’t know why. NOAA GML, 
2024Data site:

https://gml.noaa.gov/ccgg/ 

https://gml.noaa.gov/ccgg/


Big picture
• We know global GHG budgets from the atmosphere, not from adding 
up emissions inventories.  

• The atmosphere ‘sees all.’
• We call this a “top down” method of estimating GHG fluxes.

• But we don’t easily discern the processes that govern GHG budgets 
from atmospheric data.  

• We need inventories and “process models” - “bottom-up” methods of 
estimating GHG fluxes.

• For example…
• Estimates of CO2 emissions from fossil fuel consumption data 
• Simulations of how ecosystem growth and respiration responds to environmental 

conditions.
• Accounting of methane emissions from oil and gas production.
• Simulations of enteric fermentation from cattle.



Big picture

• We know global GHG budgets from the atmosphere, not from 
adding up emissions inventories.  

• The atmosphere ‘sees all.’
• We call this a “top down” method of estimating GHG fluxes.

• But we don’t easily discern the processes that govern GHG 
budgets from atmospheric data.  

• We need inventories and “process models” - “bottom-up” methods of 
estimating GHG fluxes.

• Without these complementary methods, we won’t understand 
(or be able to manage effectively) the global carbon cycle.



But “process” to “globe” is too big a 
jump.



The global rate of 
increase leveled 
off…

And then 
started to 
increase 
again…

And we don’t know why. NOAA GML, 
2024Data site:

https://gml.noaa.gov/ccgg/ 

https://gml.noaa.gov/ccgg/


Big picture

• The community has converged / is converging (I think) on a 
multi-scale approach. 



Basic plan for multi-scale 
land-atmosphere interaction studies
•Adopt a “bottom-up,” processed-based model or 
inventory

• Uses process measurements, traits and parameters and 
activity data.  



Imagine a field of “emitting 
widgets,”

Simple model example: 
Pneumatic valves that leak methane.
Count widgets, apply an emissions 
factor for methane leaked /widget / 
time.



Imagine a field of “emitting 
widgets,”

Complex model example: 
An ecosystem.  Soil and vegetation 
properties must be specified or 
predicted. Climate drivers are needed 
to estimate fluxes. Complex system of 
diagnostic or prognostic equations.



Imagine a field of “emitting 
widgets,”

Mixed model example: 
A city.  Widgets include human 
activities (e.g. traffic) and ecosystem 
elements.  Wide variety of input data 
and models are required.



Imagine a field of “emitting 
widgets,”

Observations are needed to drive the process model that predicts fluxes.



Basic plan for multi-scale 
land-atmosphere interaction studies
• Adopt a “bottom-up,” processed-based model or inventory

• Uses process measurements, traits and parameters and activity data.  
• Make “local” flux measurements

• Chambers for things you can put in a box.
• Plume measurements for point sources. 
• Eddy covariance for areally distributed sources (or sinks). 
• Why?  Test and improve the process model.



Imagine a field of “emitting 
widgets,”

Observations are needed to drive the process model that predicts fluxes.

(new emoji for an eddy covariance flux 
tower.  
Say, “what’s the flux?”)
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area.
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Imagine a field of “emitting 
widgets,”

Observations are needed to drive the process model that predicts fluxes.

Local flux measurements: 
Measure fluxes from an upwind 
area.
Or from an upwind point source.

wind

Atmospheric turbulence limits areas sensed to ~ a few kilometers ^2.  
For chambers, area sensed is the size of the box.



Imagine a field of “emitting 
widgets,”

Observations are needed to drive the process model that predicts fluxes.

Test and improve the process model using “local” flux 
measurementswind



Basic plan has emerged for multi-scale 
land-atmosphere interaction 
measurements
• Adopt a “bottom-up,” processed-based model or inventory

• Uses process measurements, traits and parameters and activity data.  
• Make “local” flux measurements

• Chambers for things you can put in a box.
• Plume measurements for point sources. 
• Eddy covariance for areally distributed sources (or sinks). 
• Why?  Test and improve the process model.

• Measure atmospheric state on a regional scale.  “Top-down” 
approach.

• Why? Evaluate the process-based model’s fluxes across regional 
scales.



Observations are needed to drive the process model that predicts fluxes.

Test and improve the process model using “local” flux 
measurements

Sample air 
upwind

Sample air 
downwind

wind

Upwind air 
parcel

Downwind 
air parcel

wind

Net flux is proportional to (the enhancement in 
concentration) x (wind speed) x (mixing depth).

Enhancement = downwind – upwind concentration.

Multi-scale, multi-state observations of earth-atmosphere 
interactions



Multi-scale, multi-state observations of earth-atmosphere 
interactions

Observations are needed to drive the process model that predicts fluxes.

Test and improve the process model using “local” flux 
measurements

Sample air 
upwind

Sample air 
downwind

wind

Upwind air 
parcel

Downwind 
air parcel

wind

Measure regional flux to test the 
process model when aggregated over 
space.

Example:
US GHG 
MMIS
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Basic plan for multi-scale 
land-atmosphere interaction 
measurements
• Adopt a “bottom-up,” processed-based model or inventory

• Uses process measurements, traits and parameters and activity data.  
• Make “local” flux measurements

• Chambers for things you can put in a box.
• Plume measurements for point sources. 
• Eddy covariance for more areally distributed sources (or sinks). 
• Why?  Test and improve the process model.

• Measure atmospheric state on a regional scale.  “Top-down” 
approach.

• Why? Evaluate the process-based model’s fluxes across regional scales.
• Iterate.  Improve.  Monitor. Mitigate with confidence.
• Measurements at each step can be in situ or remote, mobile or 
stationary, ground-based, airborne or space-based.



This layer of air is the 
atmospheric boundary 
layer.

It is our “box of air.”
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This layer of air is the 
atmospheric boundary 
layer.

It is our “box of air.”

It is turbulent!
(at least during the 
day)

Emissions from the surface get mixed into it, and then are carried 
away by the wind.  Turbulence keeps it “well mixed.”



A view from above.

The clouds show the 
top of the layer.

Clouds form at the top 
of the convective 
updrafts that keep the 
ABL “well-mixed.”



A case without 
many clouds.



A case with no 
clouds at all.

Is there an ABL?
?



A case with no 
clouds at all.

Is there an ABL?

Yes!  How can we 
tell?

?



BOREAS airborne 
lidar backscatter. 
Time in UT at top.  
Warm colors = 
more backscatter.  
Note horizontal 
scale is highly 
compressed.

km MSL
(above mean sea 
level)

km along flight track

Aircraft flight path

A clear-air atmospheric boundary layer seen via airborne 
lidar

Kiemle et al., 
1997



Little turbulence at 
night

7pm                                    2am                                                                      7am                            
2pm                          7pm https://csl.noaa.gov/groups/csl3/measurements/2021dcflux/ 

Lots of turbulence in the 
day

Velocity variance vs. altitude and 
time

https://csl.noaa.gov/groups/csl3/measurements/2021dcflux/


A clear-air ABL 
“seen” via 
(potential) 
temperature 
measurements

Purdue aircraft profiles 
over Indianapolis, IN

June 1, 2011

Capping 
inversion

Atmospheric 
boundary layer
“well-mixed!”

“Free 
atmosphere”
(not so well 
mixed)



A menace for my lovely atmospheric 
boundary layer



These things 
punch holes in 
the lid of my 
atmospheric 
boundary layer 
(ABL).



Return to the main event



Basic plan for multi-scale 
land-atmosphere interaction 
measurements
• Adopt a “bottom-up,” processed-based model or inventory

• Uses process measurements, traits and parameters and activity data.  
• Make “local” flux measurements

• Chambers for things you can put in a box.
• Plume measurements for point sources. 
• Eddy covariance for more areally distributed sources (or sinks). 
• Why?  Test and improve the process model.

• Measure atmospheric state on a regional scale.  “Top-down” 
approach.

• Why? Evaluate the process-based model’s fluxes across regional scales.
• Iterate.  Improve.  Monitor. Mitigate with confidence.
• Measurements at each step can be in situ or remote, mobile or 
stationary, ground-based, airborne or space-based.



What do we need to understand GHG 
sources and sinks? 
• Accurate and precise, regional, top-down flux estimates

• Regional-scale atmospheric mole fraction data
• Regional-scale atmospheric transport data

• Process models / bottom-up flux models
• Data are needed to inform these models

• Process-level top-down flux measurements to test the 
processes

• Flux towers, plume measurements



What’s needed? 

• Accurate and precise, regional, top-down flux estimates
• Regional-scale atmospheric mole fraction data
• Regional-scale atmospheric transport data

• Process models / bottom-up flux models
• Data are needed to inform these models

• Process-level top-down flux measurements to test the 
processes

• Flux towers, plume measurements

Two test-bed examples



INFLUX (Indianapolis Flux Experiment)

Davis et al., 2017; Miles et al., 2017; Heimburger et al., 2017 

Multi-scale, multi-variate study of GHG 
fluxes from Indianapolis.



• Communications 
towers ~100 m AGL

• Picarro CRDS 
sensors measuring 
CO2, CH4, and CO

• NOAA automated 
flask samplers

• Eddy flux at 3-4 
towers

Davis et al, 2017, http://doi.org/10.1525/elementa.188 ; 
Miles et al., 2017, http://doi.org/10.1525/elementa.127 ; 
Richardson et al, 2017, http://doi.org/10.1525/elementa.140 

Indianapolis tower-based GHG measurement network

http://doi.org/10.1525/elementa.188
http://doi.org/10.1525/elementa.127
http://doi.org/10.1525/elementa.140


• Observed CO2:  
afternoon values, 
averaged Jan-April 
2013

• Site 03: measures 
larger [CO2] by 3 ppm

• City of 1.5 million. 
• Mean CO2 enhancement in 

the daytime ABL of about 2-3 
ppm. 

• Measurement challenge!

Most 

common 

wind

Miles et al, Elementa, 2017

Urban emissions cause modest increases in 
atmospheric CO2 across the city



Use an atmospheric model with a first guess of 
emissions to simulate the enhancement.

Compare the simulated enhancement to the measured 
enhancement.

Make adjustments to the emissions!



Indianapolis carbon dioxide emissions closely 
track a research-grade emissions inventory

Traffic emissions are 
steady over time.

Stationary sources 
vary seasonally.

Both track the Hestia 
prior very closely.

Lauvaux et al., 2020, https://doi.org/10.1021/acs.est.0c00343 

https://doi.org/10.1021/acs.est.0c00343


Indianapolis carbon dioxide atmospheric and inventory 
emissions agree to within 3% on an annual basis 

Dotted line is the Hestia inventory estimate. 
Line and bars represent the mean and uncertainty of inverse flux estimates.

This level of accuracy is sufficient to track progress toward emissions mitigation.

Lauvaux et al., 2020, https://doi.org/10.1021/acs.est.0c00343 

https://doi.org/10.1021/acs.est.0c00343


Permian basin tower-based measurement 
network

Monteiro et al., 2022, 
https://doi.org/10.5194/essd-14-2401-2022 

Inlets for cavity ring-down 
spectrometers at ~100 m 
above ground.

Five sites distributed around 
the Delaware portion of the 
Permian basin, TX/NM.



Area flux mapping: Tower, in situ

Monteiro et al., 
2022

Observed CH4 enhancements vs. wind 
direction

Atmospheric modeling to 
attribute each tower 
observation to what’s upwind.



Continuous, monthly 
whole-basin methane 
emissions estimated 
with 20% uncertainty.

Emissions exceed EPA 
inventories by at least 
a factor of three.

Barkley et al, 2023, https://doi.org/10.5194/acp-23-6127-2023

Emissions are roughly 3.5x greater than the 
recently released EPA gridded inventory for the 
Delaware portion of the Permian basin.



What’s needed? 

• Accurate and precise, regional, top-down flux estimates
• Regional-scale atmospheric mole fraction data
• Regional-scale atmospheric transport data

• Process models / bottom-up flux models
• Data needed to inform these models

• Process-level top-down flux measurements 
• Flux towers, plume measurements

Two test-bed examples

Regional atmospheric GHG 
data get the job done!

But we can’t build testbeds 
everywhere.

Clearly high-resolution, 
regional-scale, 
ABL-resolving GHG 
observations from space 
would be powerful. 



One of these examples illustrates another need…



Continuous, monthly 
whole-basin methane 
emissions estimates 
with 20% uncertainty.

Emissions that exceed 
EPA inventories by at 
least a factor of three.

Why?

Barkley et al, 2023, https://doi.org/10.5194/acp-23-6127-2023

Emissions are roughly 3.5x greater than the 
recently released EPA gridded inventory for the 
Delaware.



Multi-scale, multi-state observations of earth-atmosphere 
interactions

Observations are needed to drive the process model that predicts fluxes.

Test and improve the process model using “local” flux 
measurements

Sample air 
upwind

Sample air 
downwind

wind

Upwind air 
parcel

Downwind 
air parcel

wind

Measure regional flux to test the 
process model when aggregated over 
space.



What’s needed? 

• Accurate and precise, regional, top-down flux estimates
• Regional-scale atmospheric mole fraction data
• Regional-scale atmospheric transport data

• Process models / bottom-up flux models
• Data needed to inform these models

• Process-level top-down flux measurements 
• Flux towers, plume measurements



Illustration by Omara and Presto, Carnegie Mellon University

Atmospheric measurements:  Site-level.  Ground-based.

Omara et al., 2016; Caulton et al., 
2019



Remote sensing can quantify emissions from individual 
point sources

Cusworth et al., 
2022

Jacob et al., 
2022

Aircraft 
(CarbonMapper)

Satellite 
(various)



pause



What’s needed? 

• Accurate and precise, regional, top-down flux estimates
• Regional-scale atmospheric mole fraction data
• Regional-scale atmospheric transport data

• Process models / bottom-up flux models
• Data needed to inform these models

• Process-level top-down flux measurements 
• Flux towers, plume measurements



Multi-scale flux measurements require 
multi-scale atmospheric data
• Turbulent scales
• Small regions
• Large regions



Multi-scale flux measurements require 
multi-scale atmospheric data
• Turbulent scales
• Small regions
• Large regions



Remote sensing can pick out individual point sources

Cusworth et al., 
2022

Jacob et al., 
2022

Aircraft 
(CarbonMapper)

Satellite 
(various)



Atmospheric boundary layer top ~ 1 km above 
ground

Mean 
wind

Turbulent 
eddies

Emitting widget – a point 
source

Meteorological range for turbulent (eddy covariance and 
plume-based) flux measurements



Boundary layer 
top

Mean 
wind

Turbulent 
eddies

Emitting widget – a point 
source

Particle trajectory

Meteorological range for eddy covariance and plume-based 
flux measurements



Boundary layer 
top

Mean 
wind

Turbulent 
eddies

Emitting widget – a point 
source

Multiple particle trajectories



Boundary layer 
top

Mean 
wind

Turbulent 
eddies

Emitting widget – a point 
source

Multiple particle trajectories
Concentrated 
plume close to 
the surface
~100s of 
meters from 
source

Plume partly 
mixed throughout 
the atmospheric 
boundary layer
~1-2 km

Plume is “well 
mixed” throughout 
the boundary 
layer
~5-15 km



Boundary layer 
top

Downwind range for plume-based and 
eddy covariance flux measurements

Emitting widget – a point 
source

Concentrated 
plume close to 
the surface
~100s of 
meters from 
source

Plume partly 
mixed throughout 
the atmospheric 
boundary layer
~1-2 km

Plume is “well 
mixed” throughout 
the boundary 
layer
~5-10 km

Meteorological range for eddy covariance and plume-based 
flux measurements



Boundary layer 
top

Downwind range for plume-based and 
eddy covariance flux measurements

Emitting widget – a point 
source

Concentrated 
plume close to 
the surface
~100s of 
meters from 
source

Plume partly 
mixed throughout 
the atmospheric 
boundary layer
~1-2 km

Plume is “well 
mixed” throughout 
the boundary 
layer
~5-10 km

Can space-based 
remote sensing help?

Meteorological range for eddy covariance and plume-based 
flux measurements



Remote sensing can pick out individual point sources.  Can the 
surface layer winds also be measured?

Cusworth et al., 
2022

Jacob et al., 
2022

Aircraft 
(CarbonMapper)

Satellite 
(various)



Eddy covariance

• Great method for area-source flux measurements.
• Regularly applied to test and improve process models.
• Should be used for ensemble calibration as well.
• Unlikely that we’ll be doing this from space any time soon.



Decomposition of flux measurements: Essential for heterogeneous environments

Distance to the site (m)

90%

80%

70%

-800         -400             0             400           800

800         400             0             -400          -800

Flux footprint at tower 2
• Mixed suburban 

environment

• Communications 
tower

• Three-level 
CO/CO

2
/CH

4
 

profile (10, 40, 
136m AGL)

• Flux 
instrumentation 
at 30 m AGL

• Flux system 
operated for 
about seven 
months.

Wu et al, 2022.



(a)
(b)

CO
2
 flux

(µmol m-2 
s-1)

Match every half-hourly flux footprint in space to the Hestia emissions map

Flux footprint from one half-hourly data

Distance to the site (m)

• Flux footprint is related to instrument height, 
atmospheric stability and surface roughness.

• Tower measurements were used to calculate 
input parameters of flux footprint model.

Annual mean of high-resolution (200m) Hestia emissions inventory

• Hestia has fine-scale spatial structure in urban CO
2
 

emissions, complementary to flux data.

• High emissions are correlated to the distribution of roads.

Note: emissions are limited to 20 µmol m-2 s-1  for visualization.



Cold season (JFM): 
traffic emissions and 
domestic heating

Warm season (AMJJ): 
photosynthesis, 
respiration, 
and CO

2
ff emissions.

Total CO
2
 fluxes look very 

reasonable in time:
● Traffic peaks at rush hours
● Biological flux contributions 

in the summer.

Cold season (JFM) Warm season (AMJJ)

And in space:

● Fluxes are large and positive from the 
north (highway), and 

● smaller, sometimes negative from the 
south (suburban, vegetation). 

Flux data show expected patterns for mixed 
biological and anthropogenic CO2 fluxes



Flux decomposition yields fossil and bio CO2 fluxes
Cold season 
(JFM)

Warm season 
(AMJJ)

Photosynthesis in the winter?



Hestia - Eddy Covariance bias and temporal pattern comparisons

Very small percentage bias (3%, 9%) in 
the seasonal averaged CO

2
ff emissions.

Modest RMSE, probably dominated by 
sampling error from the eddy 
covariance methods.

Shockingly close agreement in the 
seasonal temporal pattern of CO

2
ff 

emissions.

Wu et al, 2022



COVID lockdown impact on 
Indianapolis neighborhood 
fluxes.

Used to test Hestia.

Vogel et al., 2024

Hestia 
inventory

Flux tower 
measurements



Multi-scale flux measurements require 
multi-scale atmospheric data
• Turbulent scales
• Small regions
• Large regions



“Small” regions

• What are some examples? 
• Cities
• Oil and gas basins

• Why are they “small?”
• Air flows across the region without significant exchange between the 

atmospheric boundary layer and the remainder of the atmosphere



Question:  What makes air leave the 
atmospheric boundary layer?

• Fronts!
• Convective clouds!
• Weather!

Stull, 1988.

Latent heat release in updraft – 
air cools at the moist adiabatic 
lapse rate

Air warms at the dry 
adiabatic lapse rate.  Warm 
air forms the capping 
inversion.



Question: How long does it take for weather 
systems to pass by?

• How long will the 
weather stay sunny 
and lovely in Illinois?

• A few days.
• So…Small regions 
are those where the 
air passes through in 
less than a few days.



“Small” regions

• How far does the air travel in a day?
• Wind speed * a day = 5 m/s * 3600s * 24 h/d = 400+ km.  

• Bigger than a city or a gas basin.  
• Smaller than the Corn Belt or the Amazon. 



“Small” regions

• In this case, our “box of air” can be limited to the atmospheric 
boundary layer.

• How deep is the ABL?
• What is the wind speed and direction within the ABL?



Multi-scale, multi-state observations of earth-atmosphere 
interactions

Observations are needed to drive the process model that predicts fluxes.

Test and improve the process model using “local” flux 
measurements

Sample air 
upwind

Sample air 
downwind

wind

Upwind air 
parcel

Downwind 
air parcel

wind

Measure regional flux to test the 
process model when aggregated over 
space.

Example:
US GHG 
MMIS



“Small” regions

• In this case, our “box of air” can be limited to the atmospheric 
boundary layer.

• How deep is the ABL?
• What is the wind speed and direction within the ABL?

• We simulate the ABL fairly well in instrumented regions but we 
still need to evaluate and improve our atmospheric models.

• And we should develop uncertainty assessments.  Model 
ensembles are one way to do this.



Evaluation of WRF-Chem CO2 simulations in the upper 
Midwest, summer

Evaluation of mid-afternoon CO2, 
ABL depth, and ABL winds.

Blue are tower-based CO2 
observation points (PSU, NOAA).

Red are rawinsonde stations 
(NOAA).

Boxes show the model domains 
(interior at 10 km).

Diaz-Isaac et al, ACP, 2018



45-member 
atmospheric transport 
ensemble
Varied the: 
boundary and initial conditions (2), 
land surface model (3), 
boundary layer parameterization (3), 
cumulus convection parameterization 
(3) and 
cloud microphysics parameterization 
(2).

Diaz-Isaac et al, ACP, 2018



Random errors are significant for all model 
configurations

Afternoon conditions, daily 
comparison.

ABL wind (a) RMSE ~ 3 m/s.

ABL wind direction (b) RMSE ~ 50 
degrees.

ABL depth (c) RMSE ~ 700 m. 

Diaz-Isaac et al, ACP, 2018



How do you create a calibrated atmospheric 
transport model ensemble?

Construct a “rank histogram.”

Rank the observation with 
respect to its location among 
the members of the ensemble.

The ensemble should 
encompass the observations 
(sufficient spread), but not 
have too much spread.

Diaz-Isaac et al, 2019



That 45-member ensemble is 
“under-dispersive”

ABL wind speed ABL wind direction ABL depth

Diaz-Isaac et al, 2019

We can improve the ensemble by throwing out biased members.

Too windy
Too deep



Pruned 5-member ensemble

Diaz-Isaac et al, 2019

• Spread among models is a good representation of 
atmospheric model transport uncertainty.

• Ensemble bias is small.

ABL wind speed ABL wind direction ABL depth



ACT product: Continental-Scale Ensemble 
Modeling Framework

Biospheric 
Fluxes 

Boundary 
Inflow 

Transport 
Models 

Fossil Fuel 
Emissions 

Modeled 
[CO2]

Observed 
[CO2]

Modeled 
[CO2] errors

Transport

Biospheric 
Fluxes

Boundary 
Inflow

Fossil Fuel 
Emissions 

Purpose:  Quantify model 
uncertainty using an objective 
approach. Data-calibrated 
ensembles are necessary.

Applications:  Use model 
ensemble to disaggregate 
sources of uncertainty, identify 
biased ensemble members.

Zhou et al, 
2020

Diaz et al, 2018; 2019
Feng et al, 2019a, b

Feng et al, 2019a, b; 
2021

Use these uncertainty 
diagnoses to inform the 
uncertainty assumptions in 
inverse models.

Chen et al., 2019a, b 
Feng et al, 2019a, b
Gerken et al, 2021

MsTMIP, CASA, SiB4, 
CarbonTracker

CarbonTracker, 
FFDAS

CarbonTracker, CMS, 
Schuh, Baker, OCO2MIP

WRF-Chem, ERA5
TM5, GEOS

Lauvaux et al, 2019
Wesloh et al, 2020; 2024

Miles et al, 2018
Davis et al, 2018

Butler et al, 2020

Project Overview



“Small” regions

• In this case, our “box of air” can be limited to the atmospheric 
boundary layer.

• How deep is the ABL?
• What is the wind speed and direction within the ABL?

• More abundant measurements of these quantities would be 
valuable.

• I think this can be done from space-based sensors.



“Large” regions

• These are areas so large that we cannot ignore exchange of air 
between the atmospheric boundary layer and the remainder of 
the atmosphere.

• Examples:
• The Corn Belt
• Southeastern forests
• The Amazon



“Large” regions: What do we need to 
measure and simulate?
• Lifting of air by weather systems.

• Convergence and lifting at low pressure centers.
• Frontal lifting / the “warm conveyor belt”

• Vertical mixing by convective clouds



Davis et al., 
2021



Flight Campaigns and Data
• Five, six-week campaigns over 3 years, covering 

each season and summer twice. ~25 flights / 
campaign. 

• Each campaign: 2 weeks in each of 3 regions 
across US (MidAtlantic, MidWest, South Central).  

• More than 30 synoptic sequences sampled.
• About 40% of the data in the atmospheric 

boundary layer (ABL).  Data up to 9km MSL.
• 1140 total flight hours and ~400,000 km of data 

collection.  About 1,500 flasks and 1,000 vertical 
profiles.

• Aircraft data include three data flags to enable 
quick partitioning of the observations

• Atmospheric level - ABL / free troposphere
• Maneuver – spiral, en route ascent/descent, level 

leg
• Air-mass – warm sector, cold sector, fair/undefined

• Extremely low instrument failure rate.  Every flight 
returned valuable science data.

Davis et al., 2021
Wei et al, 2021

Project Overview
1) Summer 

2016
2) Winter 2017

3) Fall 2017 4) Spring 2018

5) Summer 2019



ACT-America flights as synoptic sequences
Project Overview

Davis et al, 2021



ACT-America synoptic 
sequence example.
9-14 August, 2016

Two prefrontal, one frontal and two post frontal 
flights.

Frontal passage on 12 August.  Cross-frontal 
CO2 differences evident from the ABL to the 
upper free troposphere.

Warm sector CO2 higher than cold sector CO2.  
Tropospheric differences largely due to 
continental boundary conditions.  ABL 
differences modified by continental fluxes.

Influence functions indicate upwind areas 
sampled by the ABL flight data.

Davis et al, 2021

Project Overview



ACT-America measured the impacts of frontal weather on 
atmospheric greenhouse gas distributions, in addition to 

winds and ABL depths.

ACT-America didn’t measure cloud convective processes or 
frontal lifting directly.

The data set has, frankly, been largely avoided by most of 
today’s global inverse modeling systems.



“Large” regions: What do we need to 
measure and simulate?
• Lifting of air by weather systems.

• Convergence and lifting at low pressure 
centers.

• Frontal lifting / the “warm conveyor belt”
• Vertical mixing by convective clouds

• This is more than just winds and ABL depth
• Can we improve quantification of these 
processes using space-based 
measurements?



Multi-scale, multi-state observations of earth-atmosphere 
interactions

Observations are needed to drive the process model that predicts fluxes.

Test and improve the process model using “local” flux 
measurements

Sample air 
upwind

Sample air 
downwind

wind

Upwind air 
parcel

Downwind 
air parcel

wind

Measure regional flux to test the 
process model when aggregated over 
space.

Example:
US GHG 
MMIS



Thanks for 
your 

attention.

Members of the 
Earth-Atmosphere 
Interactions Lab



References
Barkley, Z., K. Davis, N. Miles, S. Richardson, A. Deng, B. Hmiel, D. Lyon, and T. Lauvaux, (2023). Quantification of Oil and Gas Methane Emissions in the Delaware and Marcellus Basins Using a 
Network of Continuous Tower-Based Measurements, Atmos. Chem. Phys., 23, 6127 - 6144, https://doi.org/10.5194/acp-23-6127-2023 
Butler, Martha P., Thomas Lauvaux, Sha Feng, Junjie Liu, Kevin W. Bowman, and Kenneth J. Davis, 2020. Atmospheric simulations of total column CO2 mole fractions from global to mesoscale within the 
Carbon Monitoring System Flux inversion framework. Atmosphere, 11, 787; doi:10.3390/atmos11080787  
Caulton et al., 2019
Chen, Hans W., Fuqing Zhang, Thomas Lauvaux, Kenneth J. Davis, Sha Feng, Martha P. Butler, and Richard B. Alley, 2019. Characterization of Regional-Scale CO2 Transport Uncertainties in an 
Ensemble with Flow-Dependent Transport Errors. Geophysical Research Letters, 46, 4049–4058. https://doi.org/10.1029/2018GL081341
Chen, Hans W., Lily N. Zhang, Fuqing Zhang, Kenneth J. Davis, Thomas Lauvaux, Sandip Pal, Brian Gaudet, and Joshua P. DiGangi, 2019. Evaluation of Regional CO2 Mole Fractions in the ECMWF 
CAMS Real-Time Atmospheric Analysis and NOAA CarbonTracker Near-Real-Time Reanalysis With Airborne Observations From ACT-America Field Campaigns, Journal of Geophysical 
Research:Atmospheres, 124. https://doi.org/10.1029/2018JD029992.
Ciais et al., 2013.
Cusworth et al., 2022
Davis, Kenneth J., Aijun Deng, Thomas Lauvaux, Natasha L. Miles, Scott J. Richardson, Daniel P. Sarmiento, Kevin R. Gurney, R. Michael Hardesty, Timothy A. Bonin, W. Alan Brewer, Brian K. Lamb, 
Paul B. Shepson, Rebecca M. Harvey, Maria O. Cambaliza, Colm Sweeney, Jocelyn C. Turnbull, James Whetstone and Anna Karion, 2017. The Indianapolis Flux Experiment (INFLUX): A test-bed for 
developing urban greenhouse gas emission measurements. Elem Sci Anth: 2017;5:21. DOI: http://doi.org/10.1525/elementa.188 
Davis, K.J., M.D. Obland, B. Lin, T. Lauvaux, C. O'Dell, B. Meadows, E.V. Browell, J.H. Crawford, J.P. DiGangi, C. Sweeney, M.J. McGill, J. Dobler, J.D. Barrick, and A.R. Nehrir. 2018. ACT-America: L3 
Merged In Situ Atmospheric Trace Gases and Flask Data, Eastern USA. ORNL DAAC, Oak Ridge, Tennessee, USA. 
DOI: 10.3334/ORNLDAAC/1593
Davis, Kenneth J.; Edward V. Browell; Sha Feng; Thomas Lauvaux; Michael D. Obland; Sandip Pal; Bianca C. Baier; David F. Baker; Ian T. Baker; Zachary R. Barkley; Kevin W. Bowman; Yu Yan Cui; A. 
Scott Denning; Joshua P. DiGangi; Jeremy T. Dobler; Alan Fried; Tobias Gerken; Klaus Keller; Bing Lin; Amin R. Nehrir; Caroline P. Normile; Christopher W. O'Dell; Lesley E. Ott; Anke Roiger; Andrew E. 
Schuh; Colm Sweeney; Yaxing Wei; Brad Weir; Ming Xue; Christopher A. Williams, 2021. The Atmospheric Carbon and Transport (ACT) – America Mission. Bulletin of the American Meteorological 
Society, 102, E1714–E1734, https://doi.org/10.1175/BAMS-D-20-0300.1. 
Díaz-Isaac , Liza I., T. Lauvaux, K.J. Davis:  Impact of physical parameterizations and initial conditions on simulated atmospheric transport and CO2 mole fractions in the US Midwest.  Atmos. Chem. 
Phys., 18, 14813–14835, doi.org/10.5194/acp-18-14813-2018, 2018. 
Díaz-Isaac, L. I., Lauvaux, T., Bocquet, M., and Davis, K. J.: Calibration of a multi-physics ensemble for estimating the uncertainty of a greenhouse gas atmospheric transport model, Atmos. Chem. Phys., 
19, 5695-5718, https://doi.org/10.5194/acp-19-5695-2019, 2019.
Dlugocenky et al., 2003.
Feng, S., T. Lauvaux, K. Davis, K. Keller, Y. Zhou, C. Williams, A. Schuh, J. Liu, I. Baker. Seasonal characteristics of model uncertainties from biogenic fluxes, transport, and large-scale boundary inflow in 
atmospheric CO2 simulations over North America, 2019. Journal of Geophysical Research: Atmospheres, 124, 14,325–14,346. https://doi.org/10.1029/2019JD031165 
Feng, S., Lauvaux, T., Keller, K., Davis, K. J., Rayner, P., Oda, T., & Gurney, K. R. (2019). A road map for improving the treatment of uncertainties in high‐resolution regional carbon flux inverse 
estimates. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL082987 
Feng, S., T. Lauvaux, C. A. Williams, K.J. Davis, Y. Zhou, I. Baker, Z.R. Barkley, D. Wesloh, (2021). Joint CO2 mole fraction and flux analysis confirms missing processes in CASA terrestrial carbon uptake 
over North America. Global Biogeochemical Cycles, 35, e2020GB006914, https://doi.org/10.1029/2020GB006914 

https://doi.org/10.5194/acp-23-6127-2023
https://doi.org/10.1029/2018GL081341
http://doi.org/10.1525/elementa.188
https://doi.org/10.3334/ORNLDAAC/1593
https://doi.org/10.1175/BAMS-D-20-0300.1
https://doi.org/10.5194/acp-18-14813-2018
https://nam01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1029%2F2019GL082987&data=02%7C01%7Ckjd10%40psu.edu%7C0701c9aa2e784907ca1d08d76abbf53c%7C7cf48d453ddb4389a9c1c115526eb52e%7C0%7C0%7C637095227808174069&sdata=wWTH51Erg%2F2k2h%2FEtlQBUJkvsR5fCGRhq4%2FCyVVBc8E%3D&reserved=0
https://doi.org/10.1029/2020GB006914


More references
Gerken, T., Feng, S., Keller, K., Lauvaux, T., DiGangi, J.P., Choi, Y., Baier, B., Davis, K.J., 2021. Examining model observation residuals using ACT-America data, 
JGR-Atmospheres, 126, e2020JD034481 https://doi.org/10.1029/2020JD034481. 
Heimberger, Alexie M. F., Paul B. Shepson, Brian H. Stirm, Chloe Susdorf, Jocelyn Turnbull, Maria O. L. Cambaliza, Olivia E. Salmon, Anna-Elodie M. Kerlo, 
Tegan N. Lavoie, Rebecca M. Harvey, Kenneth J. Davis, Thomas Lauvaux, Anna Karion, Colm Sweeney, W. Allen Brewer, R. Michael Hardesty, Kevin R. Gurney, 
James Whetstone, 2017.  Precision Assessment for the Aircraft Mass Balance Method for Measurement of Urban Greenhouse Gas Emission Rates.  Elem Sci 
Anth. 2017;5:26. DOI: http://doi.org/10.1525/elementa.134 
Jacob et al., 2022
Kiemle, C., G. Ehret, A. Giez, K. J. Davis, D. H. Lenschow and S. P. Oncley, 1997: Estimation of boundary-layer humidity fluxes and 
statistics from airborne DIAL.  J. Geophys. Res., 102, 29189-29204. 
Lauvaux et al., 2019
Lauvaux, T., K.R. Gurney, N.L. Miles, K.J. Davis, S.J. Richardson, A. Deng, B.J. Nathan, T. Oda, J.A.Wang, L.R. Hutyra, and J.C.Turnbull, 2020. Policy-relevant 
assessment of urban greenhouse gas emissions, Environ Sci Tech. 54, 16, 10237–10245, https://doi.org/10.1021/acs.est.0c00343. 
Miles, Natasha L., Scott J. Richardson, Thomas Lauvaux, Kenneth J. Davis, Aijun Deng, Jocelyn Turnbull, Anna Karion, Colm Sweeney, Kevin R. Gurney, Risa 
Patarasuk, Igor Razlivanov, Maria O. Cambaliza and Paul B. Shepson, 2017. Quantification of urban atmospheric boundary layer greenhouse gas dry mole 
fraction enhancements:  Results from the Indianapolis Flux Experiment (INFLUX), Elem Sci Anth. 2017;5:27. DOI: http://doi.org/10.1525/elementa.127 
Miles, N.L., S.J. Richardson, D.K. Martins, K.J. Davis, T. Lauvaux, B.J. Haupt, and S.K. Miller. 2018. ACT-America: L2 In Situ CO2, CO, 
and CH4 Concentrations from Towers, Eastern USA. ORNL DAAC, Oak Ridge, Tennessee, 
USA. https://doi.org/10.3334/ORNLDAAC/1568
Monteiro, Vanessa C., Natasha L. Miles, Scott J. Richardson, Zachary Barkley, Bernd J. Haupt, David Lyon, Benjamin Hmiel, and Kenneth 
J. Davis, 2022. Methane, carbon dioxide, hydrogen sulfide, and isotopic ratios of methane observations from the Permian Basin tower 
network, Earth Syst. Sci. Data, 14, 2401–2417. https://doi.org/10.5194/essd-14-2401-2022 
Omara et al., 2016
Richardson, Scott J., Natasha L. Miles, Kenneth J. Davis, Thomas Lauvaux, Douglas K. Martins, Jocelyn C. Turnbull, Kathryn McKain, Colm Sweeney and Maria 
O. L. Cambaliza, 2017. CO2, CO, and CH4 surface in situ measurement network in support of the Indianapolis FLUX (INFLUX) Experiment.  Elem Sci Anth. 
2017;5:59. DOI: http://doi.org/10.1525/elementa.140 
Stull, R.B. 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers.
Vogel, E., K. J. Davis, K. Wu, N. L. Miles, S. J. Richardson, K. R. Gurney, V. Monteiro, G.S. Roest, H.C.R. Kenion, J.P. Horne (2024) Using eddy-covariance to 
measure the effects of COVID-19 restrictions on CO2 emissions in a neighborhood of Indianapolis, IN, Carbon Management, 15:1, 2365900, 
https://doi.org/10.1080/17583004.2024.2365900 
Wesloh, D., Lauvaux, T., & Davis, K. J. (2020). Development of a mesoscale inversion system for estimating continental‐scale CO2 fluxes. Journal of Advances in 
Modeling Earth Systems, 12, e2019MS001818 https://doi.org/10.1029/2019MS001818 
Wesloh, D., Keller, K., Feng, S., Lauvaux, T., & Davis, K. J. (2024). Temporal error correlations in a terrestrial carbon cycle model derived by comparison to 
carbon dioxide eddy covariance flux tower measurements. Journal of Geophysical Research: Biogeosciences, 129, e2023JG007526. https://doi. 
org/10.1029/2023JG007526 
Wu, Kai, Thomas Lauvaux, Kenneth J. Davis, Aijun Deng, Israel Lopez Coto, Kevin R. Gurney and Risa Patarasuk, 2018. Joint inverse estimation of fossil fuel 
and biogenic CO2 fluxes in an urban environment: An observing system simulation experiment to assess the impact of multiple uncertainties. Elem Sci Anth. 
2018;6(1):17. DOI: http://doi.org/10.1525/elementa.138 
Zhou, Y., Williams, C. A., Lauvaux, T., Davis, K. J., Feng, S., Baker, I., et al. (2020). A multiyear gridded data ensemble of surface biogenic carbon fluxes for North 
America: Evaluation and analysis of results. Journal of Geophysical Research: Biogeosciences,125, e2019JG005314. https://doi.org/10.1029/2019JG005314 

https://doi.org/10.1029/2020JD034481
http://doi.org/10.1525/elementa.134
https://doi.org/10.1021/acs.est.0c00343
http://doi.org/10.1525/elementa.127
https://doi.org/10.3334/ORNLDAAC/1568
http://doi.org/10.1525/elementa.140
https://doi.org/10.1029/2019MS001818
http://doi.org/10.1525/elementa.138
https://doi.org/10.1029/2019JG005314

