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Big picture

* We know global GHG budgets from the atmosphere, not from
adding up emissions inventories.
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IPCC, WG1, ARS, Fig
6.1
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2 2 dioxide (CO,) budget
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global sum of sources
and sinks of CO,?

IPCC, WG1, ARS, Fig
6.1



CO | The global carbon

2 Atmosv:::ﬁ?c dioxide (CO,) budget
e from the 5" Assessment
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%a 33 *2 P How do we know the
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global sum of sources
and sinks of CO,?

80

Not by adding up all
the individual
sources and sinks!

IPCC, WG1, ARS, Fig
6.1
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CO> mole fraction (ppm)
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“Top-Down.” The atmosphere tells us

the global sum of the sources of

methane.

= Measure global atmospheric CH, — concentration and rate of
change — very accurately.

= Estimate atmospheric OH — the primary sink for CH, — by
measuring trace gases with known sources.

= Solve for the global source of CH, needed to balance the global
atmospheric budget.

Source y, = k|OH||CH, |

= You cannot compute the global sum of methane sources with

any accuracy by adding up the “bottom-up” estimates of the
individual sources.
e.g. Dlugocencky et al.,

2003



Big picture

* We know global GHG budgets from the atmosphere, not from
adding up emissions inventories.
* The atmosphere ‘sees all’
* We call this a “top down” method of estimating GHG fluxes.



Big picture

* We know global GHG budgets from the atmosphere, not from
adding up emissions inventories.
* The atmosphere ‘sees all’
* We call this a “top down” method of estimating GHG fluxes.

* But we don't easily discern the processes that govern GHG
budgets from atmospheric data.

* We need inventories and “process models” - “bottom-up” methods of
estimating GHG fluxes.
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Big picture

* We know global GHG budgets from the atmosphere, not from adding
up emissions inventories.

* The atmosphere ‘sees all.’
* We call this a “top down™ method of estimating GHG fluxes.

« But we don't easily discern the processes that govern GHG budgets

from atmospheric data.
* We need inventories and “process models” - “bottom-up” methods of
estimating GHG fluxes.
* For example...
* Estimates of CO, emissions from fossil fuel consumption data
« Simulations of how ecosystem growth and respiration responds to environmental

conditions.
« Accounting of methane emissions from oil and gas production.

e Simulations of enteric fermentation from cattle.



Big picture

* We know global GHG budgets from the atmosphere, not from
adding up emissions inventories.

* The atmosphere ‘sees all’
* We call this a “top down” method of estimating GHG fluxes.

* But we don't easily discern the processes that govern GHG
budgets from atmospheric data.

* We need inventories and “process models” - “bottom-up” methods of
estimating GHG fluxes.

* Without these complementary methods, we won't understand
(or be able to manage effectively) the global carbon cycle.



But “process” to “globe” is too big a
jump.
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Big picture

* The community has converged / is converging (Il think) on a
multi-scale approach.



Basic plan for multi-scale
land-atmosphere interaction studies

*Adopt a “bottom-up,” processed-based model or
inventory

* Uses process measurements, traits and parameters and
activity data.



Imagine a field of "emitting
widgets,”

Simple model example:

Pneumatic valves that leak methane.
Count widgets, apply an emissions
factor for methane leaked /widget /
time.

[




Imagine a field of "emitting
widgets,”

[

Complex model example:

An ecosystem. Soil and vegetation
properties must be specified or
predicted. Climate drivers are needed
to estimate fluxes. Complex system of
diagnostic or prognostic equations.



Imagine a field of "emitting
widgets,”

[

Mixed model example:

A city. Widgets include human
activities (e.g. traffic) and ecosystem
elements. Wide variety of input data
and models are required.



Imagine a field of "emitting
widgets,”

[ |

Observations are needed to drive the process model that predicts fluxes.



Basic plan for multi-scale
land-atmosphere interaction studies

* Adopt a “bottom-up,” processed-based model or inventory
» Uses process measurements, traits and parameters and activity data.

* Make “local” flux measurements
« Chambers for things you can put in a box.
* Plume measurements for point sources.
« Eddy covariance for areally distributed sources (or sinks).
 Why? Test and improve the process model.



Imagine a field of "emitting
widgets,”

(new emoji for an eddy covariance flux
N tower.
Say, “what’s the flux?”)

L

Observations are needed to drive the process model that predicts fluxes.




Imagine a field of "emitting
widgets,”

Local flux measurements:
wind Measure fluxes from an upwind

— -
BPTLARERN area.

/

D

Observations are needed to drive the process model that predicts fluxes.




Imagine a field of "emitting
widgets,”

Observations are needed to drive the process model that predicts fluxes.



Imagine a field of "emitting
widgets,”

Local flux measurements:
wind Measure fluxes from an upwind

— -
JPTTAEEN area.
QI/ {%D:)\_; Or from an upwind point source.

Observations are needed to drive the process model that predicts fluxes.




Imagine a field of "emitting
widgets,”

Atmospheric turbulence limits areas sensed to ~ a few kilometers 2.

For chambers, area sensed is the size of the box. Local flux measurements:

wind Measure fluxes from an upwind

— -
JPTTAEEN area.
QI/ {%D:)\_; Or from an upwind point source.

Observations are needed to drive the process model that predicts fluxes.




Imagine a field of "emitting
widgets,”

Test and improve the process model using “local” flux

Wﬁasurements ]

=
R <3

Observations are needed to drive the process model that predicts fluxes.




Basic plan has emerged for multi-scale
land-atmosphere interaction

measurements
* Adopt a “bottom-up,” processed-based model or inventory

» Uses process measurements, traits and parameters and activity data.

* Make “local” flux measurements
« Chambers for things you can put in a box.
* Plume measurements for point sources.
« Eddy covariance for areally distributed sources (or sinks).
 Why? Test and improve the process model.

* Measure atmospheric state on a regional scale. “Top-down”
approach.

* Why? Evaluate the process-based model’s fluxes across regional
scales.



Multi-scale, multi-state observations of earth-atmosphere
Interactions

Net flux is proportional to (the enhancement in

- concentration) x (wind speed) x (mixing depth).

e Enhancement = downwind — upwind concentration. | air parcel

JlL Sample air wind Sample air l
upwind downwind
Test and improve the process model using “local” flux

Wﬁasurements ]

=
R <3

Observations are needed to drive the process model that predicts fluxes.




Multi-scale, multi-state observations of earth-atmosphere
Interactions

Measure regional flux to test the
Upwind air process model when aggregated over Downwind
parcel space. air parcel

JlL Sample air wind Sample air l
upwind downwind
Test and improve the process model using “local” flux

surements
Wi XY _ Example:

S US GHG
CJ) {%:)\_; MMIS

Observations are needed to drive the process model that predicts fluxes.



Basic plan for multi-scale
land-atmosphere interaction

measurements
* Adopt a “bottom-up,” processed-based model or inventory

» Uses process measurements, traits and parameters and activity data.

* Make “local” flux measurements
« Chambers for things you can put in a box.
* Plume measurements for point sources.
« Eddy covariance for areally distributed sources (or sinks).
* Why? Test and improve the process model.

* Measure atmospheric state on a regional scale. “"Top-down”
approach.
* Why? Evaluate the process-based model’s fluxes across regional
scales.

e [terate. Improve. Monitor.



Basic plan for multi-scale
land-atmosphere interaction

measurements
* Adopt a “bottom-up,” processed-based model or inventory

» Uses process measurements, traits and parameters and activity data.

* Make “local” flux measurements
« Chambers for things you can put in a box.
* Plume measurements for point sources.
« Eddy covariance for more areally distributed sources (or sinks).
* Why? Test and improve the process model.

* Measure atmospheric state on a regional scale. “"Top-down”
approach.
* Why? Evaluate the process-based model’s fluxes across regional
scales.

* [terate. Improve. Monitor. Mitigate with confidence.



Basic plan for multi-scale
land-atmosphere interaction
measurements

* Adopt a “bottom-up,” processed-based model or inventory
» Uses process measurements, traits and parameters and activity data.

* Make “local” flux measurements
« Chambers for things you can put in a box.
* Plume measurements for point sources.
« Eddy covariance for more areally distributed sources (or sinks).
 Why? Test and improve the process model.

* Measure atmospheric state on a regional scale. “Top-down”
approach.

* Why? Evaluate the process-based model’s fluxes across regional scales.
e lterate. Improve. Monitor. Mitigate with confidence.

* Measurements at each step can be in situ or remote, mobile or
stationary, ground-based, airborne or space-based.



This layer of air is the

atmospheric boundary
layer.

It is our “box of air.”




This layer of air is the
atmospheric boundary

layer.

It is our “box of air.”

It is turbulent!
(during the day)




This layer of air is the
atmospheric boundary
layer.

It is our “box of air.”
It is turbulent!

(at least during the
day)

Emissions from the surface get mixed into it, and then are carried
away by the wind. Turbulence keeps it “well mixed.”



A view from above.

| The clouds show the

top of the layer.

Clouds form at the top
of the convective
updrafts that keep the
ABL “well-mixed.”



A case without
many clouds.




A case with no
clouds at all.

Is there an ABL?




A case with no
clouds at all.

Is there an ABL?

Yes! How can we
tell?




A clear-air atmospheric boundary layer seen via airborne

Ildar Aircraft flight path18:15 18:20

AT BOREAS airborne
G . lidar backscatter.
Time in UT at top.
Warm colors =
more backscatter.
Note horizontal
scale is highly
compressed.

km MSL
(above mean sea
level)

POy i comnlf ST | Kiemle et al.,
0 20 40 60 80  km along f?i&Wtrack
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Height Above Ground (m)
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First VP
Between 12:45 and
1:15 PM EDT
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Microbead sensor
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“Free
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mixed)

Capping
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Atmospheric
boundary layer
“well-mixed!”
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Purdue aircraft profiles
over Indianapolis, IN

June 1, 2011



A menace for my lovely atmospheric
boundary layer



These things
punch holes Iin
the lid of my
atmospheric

boundary layer
(ABL).



Return to the main event



Basic plan for multi-scale
land-atmosphere interaction
measurements

* Adopt a “bottom-up,” processed-based model or inventory
» Uses process measurements, traits and parameters and activity data.

* Make “local” flux measurements
« Chambers for things you can put in a box.
* Plume measurements for point sources.
« Eddy covariance for more areally distributed sources (or sinks).
 Why? Test and improve the process model.

* Measure atmospheric state on a regional scale. “Top-down”
approach.

* Why? Evaluate the process-based model’s fluxes across regional scales.
e lterate. Improve. Monitor. Mitigate with confidence.

* Measurements at each step can be in situ or remote, mobile or
stationary, ground-based, airborne or space-based.



What do we need to understand GHG
sources and sinks?

» Accurate and precise, regional, top-down flux estimates
» Regional-scale atmospheric mole fraction data
* Regional-scale atmospheric transport data

* Process models / bottom-up flux models
* Data are needed to inform these models

* Process-level top-down flux measurements to test the
processes
* Flux towers, plume measurements



What's needed?

» Accurate and precise, regional, top-down flux estimates
* Regional-scale atmospheric mole fraction data
* Regional-scale atmospheric transport data

* Process models / bottom-up flux models
* Data are needed to inform these models

* Process-level top-down flux measurements to test the
processes
* Flux towers, plume measurements

wo test-bed examples



INFLUX (Indianapolis Flux ExperimentNIsr

> A INFLUX EC
TOWER

University of Colorado
Boulder

N ALI -86.8 -86.6 -86.4 -86.2 -86 -85.8
Longitude

NORTHERN

ARIZONA

o PSS Davis et al., 2017; Miles et al., 2017; Heimburger et al., 2017



"‘o,, PennState '\ '
Indianapolis tower-based GHG measurement network lsr

Latitude
(d0]
O
[o]

LEGEND ) e R e e  Communications
Measurements being taken: ‘ R e o e s ; ~
i 2 towers ~100 m AGL

e Picarro CRDS
Sensors measuring
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05 Bl e N | Blas » NOAA automated
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Longitude ° _
Davis et al, 2017, http://doi.org/10.1525/elementa.188 ; Eddy flux at 3-4
Miles et al., 2017, http://doi.org/10.1525/elementa.127 ; towers

Richardson et al, 2017, http://doi.org/10.1525/elementa.140



http://doi.org/10.1525/elementa.188
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http://doi.org/10.1525/elementa.140

Urban emissions cause modest increases in
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Use an atmospheric model with a first guess of
emissions to simulate the enhancement.

Compare the simulated enhancement to the measured
enhancement.

Make adjustments to the emissions!



CO, fluxes (ktC)

CO, fluxes (ktC)

Indianapolis carbon dioxide emissions closely
track a research-grade emissions inventory
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Lauvaux et al., 2020, https://doi.org/10.1021/acs.est.0c00343

Traffic emissions are
steady over time.

Stationary sources
vary seasonally.

Both track the Hestia
prior very closely.

NIST



https://doi.org/10.1021/acs.est.0c00343

Indianapolis carbon dioxide atmospheric and inventory
emissions agree to within 3% on an annual basis
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Dotted line is the Hestia inventory estimate.
Line and bars represent the mean and uncertainty of inverse flux estimates.

This level of accuracy is sufficient to track progress toward emissions mitigation.

Lauvaux et al., 2020, https://doi.org/10.1021/acs.est.0c00343 NH



https://doi.org/10.1021/acs.est.0c00343

Permian basin tower-based measurement
network

Five sites distributed around
the Delaware portion of the
Permian basin, TX/NM.

Inlets for cavity ring-down
spectrometers at ~100 m
above ground.

ENVIRONMENTA
DEFENSE FUND\

Finding the ways that work

Monteiro et al., 2022, w PennState
https://doi.org/10.5194/essd-14-2401-2022




Area flux mapping: Tower, in situ
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Finding the ways that work



Delaware Basin Continuous, monthly

2o bme - searer | Whole-basin methane
Bl Pelesr - BemPslsnd amissions estimated

with 20% uncertainty.

Emissions exceed EPA
inventories by at least
a factor of three.

Emssions (Mg h')

Emissions are roughly 3.5x greater than the
A+ recently released EPA gridded inventory for the
Delaware portlon of the Permian basin.

'P '{f 'éf' 7 2 ‘P'}; .'\'}i P
F TP ESLY EDF 2,

Barkley et al, 2023, https://doi.org/10.5194/acp-23-6127-2023 ggg@gmw\

Finding the ways that work




What's needed?

» Accurate and precise, regional, top-down flux estimates
* Regional-scale atmospheric mole fraction data
» Regional-scale atmospheric transport data Regional atmospheric GHG

» Process models / bottom-up flux models ~ data get the job donel

D inf h del
ata needed to inform these models But we can’t build testbeds

* Process-level top-down flux measurements ¢y erywhere.
* Flux towers, plume measurements
Clearly high-resolution,

regional-scale,

ABL-resolving GHG
Two test-bed examples observations from space

would be powerful.



One of these examples illustrates another need...



Delaware Basin Continuous, monthly

2o bme - searer | Whole-basin methane
— HuPelesr — Begbsblesd eamissions estimates

with 20% uncertainty.

-
= .
2 Emissions that exceed
;g EPA inventories by at
& least a factor of three.
Emissions are roughly 3.5x greater than the Why?
9+ recently released EPA gridded inventory for the
Delaware.
& F A O N
P P G A G A S FDF &<

Barkley et al, 2023, https://doi.org/10.5194/acp-23-6127-2023 ggg@gmw\

Finding the ways that work



Multi-scale, multi-state observations of earth-atmosphere
Interactions

Measure regional flux to test the
Upwind air process model when aggregated over Downwind
parcel space. air parcel

JlL Sample air wind Sample air l
upwind downwind
Test and improve the process model using “local” flux

Wﬁasurements ]

=
R <3

Observations are needed to drive the process model that predicts fluxes.




What's needed?

» Accurate and precise, regional, top-down flux estimates
» Regional-scale atmospheric mole fraction data
* Regional-scale atmospheric transport data

* Process models / bottom-up flux models
» Data needed to inform these models

* Process-level top-down flux measurements
* Flux towers, plume measurements



Atmospherlc measurements: Site- IeveI Ground based

Dual Tracer Flux Measurement Techmque

[ . 6‘ ~ -
Downwind plumes of ~ |

CH,, C,Hg N,0, and C,H,

Omara et al., 2016: Caulton et al., lllustration by Omara and Presto, Carnegie Mellon University

272010



Remote sensing can quantify emissions from individual

point sources
Basins surveyed between 2019-2021

Point sources

CH, emissions (kg h™')
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Background imagery ©2022 Google
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CarbonMapper -
Cusworth et(al., Pper) Jacob et §f2"0Us)
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What's needed?

» Accurate and precise, regional, top-down flux estimates
» Regional-scale atmospheric mole fraction data
* Regional-scale atmospheric transport data

* Process models / bottom-up flux models
» Data needed to inform these models

* Process-level top-down flux measurements
* Flux towers, plume measurements



Multi-scale flux measurements require
multi-scale atmospheric data
* Turbulent scales

* Small regions
Large regions



Multi-scale flux measurements require
multi-scale atmospheric data
* Turbulent scales

* Small regions
Large regions



Remote sensing can pick out individual point sources

Point sources
Basins surveyed between 2019-2021 :

3000
A CH, emissions (kg h™')
.ﬁ% K i TR o . 2000
0 N g W i
( Denve P ; 0=

| i

o

g

2 8

(qdd) Juswsoueyua aueyl

&

»
Coal vent

Background imagery ©2022 Google

Aircraft Satellite
CarbonMapper -
Cusworth et(al Pper) Jacob et gﬁrlous)



Meteorological range for turbulent (eddy covariance and
plume-based) flux measurements

Atmospheric boundary layer top ~ 1 km above

Turbulent

Mean eddieS

wind

e

Emitting widget — a point
source



Meteorological range for eddy covariance and plume-based
flux measurements

Boundary layer

top WWW
Particle trajectory

Turbulent
eddies

Mean
wind

e

Emitting widget — a point
source



Multiple particle trajectories

Boundary layer

TN Y

Turbulent

eddies

Mean
wind

Emitting widget — a point
source



Multiple particle trajectories

Concentrated Plume partly Plume is “well
plume close to mixed throughout mixed” throughout
the surface the atmospheric the boundary
~100s of boundary layer layer
Boundary layer meters from ~1-2 km ~5-15 km

f\/(\/_\/\

N

Turbulent

eddies

Mean
wind

Emitting widget — a point
source



Meteorological range for eddy covariance and plume-based

centrated Plume partly Plume is “well
ﬂUX measu rem%ﬂ% close to mixed throughout mixed” throughout
the surface the atmospheric the boundary
~100s of boundary layer layer
Boundary layer meters from ~1-2 km ~5-10 km

f\/(\/_\/\

A

Downwind range for pI e-based a
eddy covariance f'd\x\q easurement

Emitting widget — a point
source



Meteorological range for eddy covariance and plume-based

centrated Plume partly Plume is “well
ﬂUX measu rem%ﬂ% close to mixed throughout mixed” throughout
the surface the atmospheric the boundary
~100s of boundary layer layer
Boundary layer meters from ~1-2 km ~5-10 km
top %W\
f\/(\/_\/\

A

Downwind range for pI e-based a
eddy covariance f'U\x\q easurement

Emitting widget — a point Can space-based
source remote sensing help?



Remote sensing can pick out individual point sources. Can the

surface layer winds also be measurer?
Basins surveyed between 2019-2021

Point sources

o ;
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Background imagery ©2022 Google
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Eddy covariance

 Great method for area-source flux measurements.

* Reqgularly applied to test and improve process models.
* Should be used for ensemble calibration as well.

* Unlikely that we'll be doing this from space any time soon.



Decomposition of flux measurements: Essential for heterogeneous environments
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Wu et al, 2022.
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e Mixed suburban
environment

¢ e Communications
tower

| ® Three-level
CO/CO,/CH,
profile (10, 40,
136m AGL)

* Flux
instrumentation
at 30 m AGL

B o Flux system

operated for
about seven
months.
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Match every half-hourly flux footprint in space to the Hestia emissions map

Flux footprint from one half-hourly data Annual mean of high-resolution (200m) Hestia emissions inventory

B el 39.815 20
39.81
i 15
39.805
39.8 10
39.795
D
7 39.79
Disfance to the site (m) 39.785 .03 -86.02 -8601 (coz Tlux
pumol m

. . . . . _2 _1 . -1 . .
Flux footprint is related to instrument height, Note: emissions are limited to 20 umol m™ s for vistalization.
atmospheric stability and surface roughness. * Hestia has fine-scale spatial structure in urban CO,
emissions, complementary to flux data.

Tower measurements were used to calculate
High emissions are correlated to the distribution of roads.

input parameters of flux footprint model. .



Flux data show expected patterns for mixed

| traffic emissions and

20 |
: —f—cold season
{ M \: I warm season
7 /! %\ A
"o { [/A _ ) ‘x‘{&f
°.'2 10 \\v‘/\yﬂj/, N .o M\]L “ . H
2 |
X ! |
=, I | |
g 0 »
5+ T ll l |
T . , | |
Hour (LST)

And in space:

® Fluxes are large and positive from the
north (highway), and

e smaller, sometimes negative from the
south (suburban, vegetation).

biological and anthropogenic CO, fluxes

Cold season (JFM): Total CO, fluxes look very

reasonable in time:

e Traffic peaks at rush hours
Biological flux contributions

in the summer,

domestic heating

Warm season (AMJJ):
photosynthesis,
respiration,

and CO_ff emissions.

Cold season (JFM) Warm season (AMJJ)

N Mean

-5
-10
-15
umol

s CO, flux (-5

)



Flux decomposition yields fossil and bio CO, fluxes

Cold season

25 (JEM) .
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Frequency

CO, flux (umol m2 s?)

200

150

RS
o
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Hestia - Eddy Covariance bias and temporal pattern comparisons

Cold season (JFM)

(a)

Bias = 0.36 umol m2s!
Bias percentage = 3.2%
'RMSE = 8.91 pmol m2 s

-40 -20 0 20
DIFF (umol m2s1)

(c)

{* Fcoz FF + Hestia

0 5 10 15 20 25

Hour (LST)

Frequency

CO, flux (umol m2 s?)

200

150

100 ¢

(&)
o

20

i
(&)

=1
o

(&)}

Warm season (AMJJ)

(b)

Bias = 0.62 umol m2s!
Bias percentage = 9.1%
'RMSE = 7.54 pmol m2 s°1

-30 -20 -10 0 10 20 30
DIFF (umol m?s?)

(d)

~f+—Fcop FF —T—Hestia

\', I \
| Ao
3 ]
ne

0 5 10 15 20 25

Hour (LST)

Very small percentage bias (3%, 9%) in
the seasonal averaged CO, ff emissions.

Modest RMSE, probably dominated by
sampling error from the eddy
covariance methods.

Shockingly close agreement in the
seasonal temporal pattern of CO_ff
emissions.

Wu et al, 2022
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Total CO, Flux
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COVID lockdown impact on
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fluxes.

Used to test Hestia.

Vogel et al., 2024
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Multi-scale flux measurements require
multi-scale atmospheric data
* Turbulent scales

« Small regions
Large regions



“Small” regions

* What are some examples?
* Cities
* Qil and gas basins

*Why are they “small?”

* Air flows across the region without significant exchange between the
atmospheric boundary layer and the remainder of the atmosphere



Question: What makes air leave the

atmospheric boun

Latent heat release in updraft —

z4 air cools at the moist adiabatic
lapse rate
* Fronts! Air warms at the dry P B s
: | adiabatic lapse rate. Warm  , VLA T
» Convective clouds! air forms the Capping ,@F/E\ .
 \Weather! INVErsion. subsidence ¥ o 6;,» d ff‘“‘"‘"
; tfl ,.,\n
1s {

Fig. 1.6  Schematic of synoptic - scale variation of boundary layer
depth between centers of surface high (H) and low (L)
pressure. The dotied line shows the maximum height
reached by surface modified air during a one-hour period.
The solid line encloses the shaded region, which is most
studied by boudary-layer meteorlogists.

Stull, 1988.




Question: How long does it take for weather
systems to pass by?

* How long will the
weather stay sunny
and lovely in lllinois?

A few days.

*S0...Small regions s 0l
are those where the e
air passes through in AR

less than a few days.




“Small” regions

* How far does the air travel in a day?
* Wind speed * a day = 5 m/s * 3600s * 24 h/d = 400+ km.

 Bigger than a city or a gas basin.
« Smaller than the Corn Belt or the Amazon.



“Small” regions

* In this case, our “box of air” can be limited to the atmospheric
boundary layer.
 How deep is the ABL?
* What is the wind speed and direction within the ABL?



Multi-scale, multi-state observations of earth-atmosphere
Interactions

Measure regional flux to test the
Upwind air process model when aggregated over Downwind
parcel space. air parcel

JlL Sample air wind Sample air l
upwind downwind
Test and improve the process model using “local” flux

surements
Wi XY _ Example:

S US GHG
CJ) {%:)\_; MMIS

Observations are needed to drive the process model that predicts fluxes.



“Small” regions

* In this case, our “box of air” can be limited to the atmospheric
boundary layer.
 How deep is the ABL?
* What is the wind speed and direction within the ABL?

* We simulate the ABL fairly well in instrumented regions but we
still need to evaluate and improve our atmospheric models.

* And we should develop uncertainty assessments. Model
ensembles are one way to do this.



Evaluation of WRF-Chem CD simulations in the up m‘_,

Midwest,

120°W

sumimer

105°W 90°W 75°W

50°N —

45°N —

40°N —

35°N —

30°N —

25°N —

— 50°N

[~ 45°N

o

— 40°N

— 35°N

— 30°N

&
| I | | T |

S~ 25°N

| |
110°W 105°W

100°W 95°W 90°W 85°W 80°W 75°W

Evaluation of mid-afternoon COZ,
ABL depth, and ABL winds.

Blue are tower-based CO,
observation points (PSU, NOAA).

Red are rawinsonde stations
(NOAA).

Boxes show the model domains
(interior at 10 km).

Diaz-lsaac et al, ACP, 2018



Table 1. Diffcrent model configurations used in this study.

45-member

Mupdel number Reanalysis L5M PBL. Cumulus Microphysics
scheme scheme scheme schemey .
I Rk Noal YSU RKain-Fritsch WM S-class t h t t
NARR Noali MYT Kain-Tritsch WM S-class a I I I 0 S p e r I C r a n S p D r
I X \ NARR Noah MYNN Kain-Fritsch WEM S-class
FNL RLC: YSU Kain-Fritsch WSM S-class
5 FNL RLC MY] Kain-Fritsch WSM S-class e n S e I I l b I e
FNL RLC MYNN Kain-Fritsch WSM S-class
[ ] NARR Thermal dif. YSU Kain-Fritsch WSM S-class
[ | NARR Thermal dif. MYT Kain-Fritsch WSM S-class . .
NARR Thermal dif. MYNN Kain-Tritsch WSM S-class Va rl e d th e .
NARR Neah YSU Grell-3D WSM 5-class
] NARR Nozh MY [ Grell-30) WM S-clss Tia s 14
boundary and initial conditions (2),
| FNI. RUC YU Grell-21 WRM S-cluss
TNL RUC MYT Cirell-3D WM S-class I d rf d I 3
'NL RUC MYNN Cirell-3D WV S-elass a n S U a Ce m O e y
NARR Thermal dif, YSU Grell-3D WSM S-class . .
[ 17 NARR Therual dif, MY [ Cirell-30 WM S-tluss b d | t t (3 )
NARR Thermal dif. MYNN Grell-3D WM S-class O u n a ry aye r pa ra m e e rl Za I O n ’
NARR Noah YSU Kain-Fritsch Thompson . . .
2] NARR Noah MY T Kain-Fritsch Thonpsen I t p t t
-_ NARR Noah MYNN Kain-Tritsch Thowmpson C u m u u S CO n Ve C I O n a ra m e e rl Za I O n
I'NL RTC YSU Kain-Tritsch Thompson
PN, RLC MY S Kuin-Frilsch Thumpson (3 ) an d
FNI. RUC MYNN Kuin-Frilsch Thompson
NARR Thermal dil) YSsU Kuin-Frils¢h Thompson . - " .
————— S R v cloud microphysics parameterization
NARR Therual dif MYNN Kain-liritsch ‘Thoupson
28 NARR Noal YSiL Cirell-31> Thampsen 2
NARR Noah MYT GCrell-3D Thompson .
NARR Noah MYNN Grell-3D Thompson
l 31 | NARR Nozh YSL No CP WM S-¢liss
| 32 | NARR Noah MY No CP WEM S-class
3 | NARR Noah MYNN No CP WEM 5-class
| 34 | FNI. RLC YSU No CP WSV S-clasy
35 FNI. RLC MY No CP WM Focluss
36 I'NL RLC MYNN Nu CP WM Scluss
| 37 |  NARR Thermal dif. YSU No CP WEM S-class
| 38 | NARR Thermal dif. MYS No CP WSM S-class
39 NARR Thermal dif. MYNN No CP WM S-class
[ 40 | FNL Noah YSU Kain-Fritsch WSM 5-class
| 4 | FNI. Noah MY [ K ain-Fritseh WS S-clags
42 FNI. Noah MYNN Kuin=Fritsch WEM Sacluss
[ 43 I'NL Therwal dif. YSL Kain-liritsch WM S-elass .
| 44 FNI. Thermal kil MY Kuin-Frilsch WM S-cluss D I aZ' I SaaC et aI y AC P, 20 1 8

45 FNI. Thenal &ifl MYNN Kuin=kritsch WM Sacluss
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Afternoon conditions, daily
comparison.

ABL wind (a) RMSE ~ 3 m/s.

ABL wind direction (b) RMSE ~ 50
degrees.

ABL depth (c) RMSE ~ 700 m.

Diaz-lsaac et al, ACP, 2018



How do you create a calibrated atmospheric

transport model ensemble?
| | (@ | | | ®  Construct a “rank histogram.”

W Rank the observation with

0

oo ™ 2 respect to its location among
the members of the ensemble.

F
(=

WSPD (m/s)

WSPD (m/s)

70 180 190 200

g = S . ()

WDIR (deg.)

AL _ _ ARABEE S 5 | The ensemble should
170 180 190 200 170 180 190 200 .

| encompass the observations
"' (sufficient spread), but not

WDIR (deg.)

E,q_ ,é_4.
Z, 3 zw have too much spread.
200 0o T W0 2

180 190
Day of the Year (DOY)

— ]
]
P .

Day of the Year (DOY)
Diaz-lsaac et al, 2019




That 45-member ensemble is

“under-dispersive”
ABL wind speed ABL wind direction ABL depth

@ b) (c),

- Too deep

& 0.08 |- Too windy

|
0 20 40 0 20 40 0 20 40
Rank of observation Rank of abservation Rank of observation

We can improve the ensemble by throwing out biased members.

Diaz-lsaac et al, 2019



Pruned 5-member ensemble
"ABL wind speed  ABL wind direction =~ ABL depth

(g) (h) (1)

Frequency

1 2 3 4 56 1 2 3 4 5 6 1 2 3 4 5 6

Rank of observation Rank of observation Rank of observation

« Spread among models is a good representation of
atmospheric model transport uncertainty.

« Ensemble bias is small.

Diaz-lsaac et al, 2019



ACT product: Continental-Scale Ensemble
Modeling Framework

MsTMIP, CASA, SiB4,  CarbonTracker, ga;bf]”galfke"bcc'\ggiwp Purpose: Quantify model
CarbonTracker FFDAS chuh, Baket, uncertainty using an objective

approach. Data-calibrated
Zhou et aI, Biospheric Fossil Fuel Boundary Butler et aI, 2020 ensembles are necessary.
2020 Fluxes Emissions Inflow

Applications: Use model
ensemble to disaggregate

WRF-Chem, ERA5 — Chen et al., 2019a, b sources of uncertainty, identify
TM5. GEOS Modgls Feng et al, 2019a, b biased ensemble members.
Gerken et al, 2021 Feng et al, 2019a, b;
Transport
Diaz et al, 2018; 2019 = - 2021
Feng et al, 2019a, b M y Use these uncertainty
1 Modeled H$ Fluxes diagnoses to inform the
Miles et al, 2018 [CO,] errors | uncertainty assumptions in
Davis et al. 2018 | ©bserved inverse models.
€O, Lauvaux et al, 2019

Wesloh et al, 2020; 2024



“Small” regions

* In this case, our “box of air” can be limited to the atmospheric
boundary layer.
 How deep is the ABL?
* What is the wind speed and direction within the ABL?

* More abundant measurements of these quantities would be
valuable.

* | think this can be done from space-based sensors.



“Large” regions

* These are areas so large that we cannot ignore exchange of air
between the atmospheric boundary layer and the remainder of
the atmosphere.

* Examples:
 The Corn Belt
« Southeastern forests
 The Amazon



“Large” regions: What do we need to
measure and simulate?

* Lifting of air by weather systems.
« Convergence and lifting at low pressure centers.
* Frontal lifting / the “"warm conveyor belt”

* Vertical mixing by convective clouds
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Flight Campaigns and Data P SIECE = 2)Winter2017

LS 20 e B ==
Five, six-week campaigns over 3 years, covering Bt |
each season and summer twice. ~25 flights /

campaign.

Each campaign: 2 weeks in each of 3 regions
across US (MidAtlantic, MidWest, South Central).

More than 30 synoptic sequences sampled.

About 40% of the data in the atmospheric
boundary layer (ABL). Data up to 9km MSL.

1140 total flight hours and ~400,000 km of data ey X
collection. About 1,500 flasks and 1,000 vertical X aeny
profiles. '

= h 8%
Googleearthia’
a O

% .

et ~ #)Spring 2018,/

Aircraft data include three data flags to enable kS P Wi ooglecen . gy
quick partitioning of the observations
» Atmospheric level - ABL / free troposphere

« Maneuver — spiral, en route ascent/descent, level
leg
« Air-mass — warm sector, cold sector, fair/undefined

e (C-130

Davis et al., 2021
Wei et al, 2021

Extremely low instrument failure rate. Every flight
returned valuable science data.



ACT-America flights as synoptlc sequences
5 7B B M3 =

Frontal \Warm Stationary Pre-frontal Post-frontal 0co-2  Transit Warm
passage front  Ppassage fair weather fairweather  underflight flight inflow
Summer t C t , 7( : tﬁ j‘ 7(

2016 o : .

18-19Jul 21-22 Jul 25 - 26- 27)ul T 3-4-5Aug 8Aug 8 - 9- 12 - 13- 14Aug T 19- 20- 21- 22 - 23-- 24Aug 27 - 28 Aug T
MA-1 MA-2 MA-3 MW-1 MW-2 MW-3 South-1 South-2

Winter t A U p— I’i

2017 230 L NR
1- 4 - 6Feb 8- 9- 10Feb 12Feb T 15 - 16- 17Feb 19 -20Feb 23 - 25- 26Feb T 1- 2- 3- 4 Mar 7 -8 -9Mar 10Mar
South-1 South- 2 South- 3 MW-1 MW-2 MW-3 MA-1 MA-2 MA-3

Fall a o

2017 B ; B
3- 4 - 50ct 8- 10 -110ct  140ct T 18- 20 - 21 220ct 24 - 26 -27 Oct T 2- 3Nov 5 - 6Nov 9- 10Nov T

MA-1 MA-2 MA-3 MW-1 MW-2 South-1 South- 2 South-3
e [E = ,_ FITRRPTAIE

2018 o - : 3 s /

13-14 Apr 16 -17 - 18 - 19 -20 Apr 22 Apr T 25 - 26 - 27 Apr 29 - 30 Apr 1 - 2May T 8 -9 May 11-12May 15-16 - 18- 20May
South-1 South- 2 South- 3 MW-1 MW-2 MA-1 MA-2 MA-3
il 1 I Gl | W&o

2019

20Jun  22Jun 26--27Jun T 4Jul 7 -8 -9 -10m T 19-20Jul 22 -24 -25 - 26 - 27 ul

Davis et al, 2021
South-1 South-2 South-3 MW-1 MW-2 MA-1 MA-2



[CO,], ppm

113-14 Aug

GPS altitude, km MSL

IS S =
TG« @i:x,z’?m e B J P = b3 553
2 T

98 97 96 95 94 93 92 91 -90
Lon, °E

Influence function (ppm/pmole m-2s-1)

ACT-America synoptic
sequence example.

9-14 August, 2016

Two prefrontal, one frontal and two post frontal
flights.

Frontal passage on 12 August. Cross-frontal
CQO, differences evident from the ABL to the
upper free troposphere.

Warm sector CO,, higher than cold sector CO,,.
Tropospheric differences largely due to
continental boundary conditions. ABL
differences modified by continental fluxes.

Influence functions indicate upwind areas
sampled by the ABL flight data.

Davis et al, 2021



ACT-America measured the impacts of frontal weather on
atmospheric greenhouse gas distributions, in addition to
winds and ABL depths.

ACT-America didn't measure cloud convective processes or
frontal lifting directly.

The data set has, frankly, been largely avoided by most of
today’s global inverse modeling systems.



“Large” regions: What do we need to
measure and simulate?

* Lifting of air by weather systems.

« Convergence and lifting at low pressure
centers.

* Frontal lifting / the “"warm conveyor belt”
* Vertical mixing by convective clouds

* This is more than just winds and ABL depth

* Can we improve quantification of these
processes using space-based
measurements?




Multi-scale, multi-state observations of earth-atmosphere
Interactions

Measure regional flux to test the
Upwind air process model when aggregated over Downwind
parcel space. air parcel

JlL Sample air wind Sample air l
upwind downwind
Test and improve the process model using “local” flux

surements
Wi XY _ Example:

S US GHG
CJ) {%:)\_; MMIS

Observations are needed to drive the process model that predicts fluxes.
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