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Increasing in Atmospheric CO2 is the Primary  
Driver for Climate Change 

• Year 2023 was the hottest year since 1850s;
• Atmospheric CO2 concentration has been 

accelerating. • Future climate change is closely related to the 
atmospheric CO2 concentration.

• The changes of atmospheric CO2 concentration is 
the net effect of sources and sinks.



The Variability of  Atmospheric CO2 is Driven by 
Atmospheric Transport and Surface CO2 Fluxes

• The spatiotemporal gradient of atmospheric CO2 
concentration is the result of both atmospheric 
transport and surface fluxes.

• Satellite observations (e.g., OCO-2) capture a snapshot 
of atmospheric CO2 concentration. 

https://svs.gsfc.nasa.gov/

6-hourly column CO2 concentration simulations



OCO-3 (since 08/2019):
International Space Station, 

±52°N/S coverage

OCO-2 (since 09/2014):
Sun-synchronous orbit, pole-to-
pole coverage
Footprint size: 1.9x2.3km2

• The CO2 north-south gradient is about 5-7 ppm
• The accuracy of XCO2 retrievals is about 

1.0ppm.
• No observations under cloud, high aerosol, 

and low light conditions. 

Credit: T. Kurosu



OCO-2/3 Detect CO2 Signals from Fossil Fuel Emissions in 
Large Urban Areas and Power Plants



OCO-3 (ISS) Snapshot Area Maps

CO2, Belchatów Powerplant, Poland
CO2, Los Angeles



What are the barriers to advancing 
quantification of  fossil fuel emissions and 
improving our understanding of  natural 
carbon fluxes? 



STILT: Stochastic Time-inverted Lagrangian Transport Model
Column footprint = f(PBLH, wind field, Satellite sensitivity...)

Calculating the Sensitivity of  CO2 Concentration to the 
Fluxes: X-STILT in Linking Concentrations to Emissions
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Calculating the Sensitivity of  CO2 Concentration to the 
Fluxes: X-STILT in Linking Concentrations to Emissions

Uncertainty sources: Transport 

Backward-time 
Wind direction

FFCO2

STILT: Stochastic Time-inverted Lagrangian Transport Model
Column footprint = f(PBLH, wind field, Satellite sensitivity...)

BioCO2

Column CO2 Enhancements = Column footprint x FFCO2 fluxes

Credit: D. Wu



Urban Emission Characteristics and Uncertainties

20 arid cities 

Wu et al., ERL, 2020

• Uncertainty sources: observational error and 
transport errors



Urban Emission Characteristics and Quantification
77 cities 

Wilmot e t al., 2024

• Captures ∼16% of global carbon dioxide emissions, similar in magnitude to the total direct emissions of the 
United States or Europe.

• Uncertainties: aerosols and cloud coverage 



Estimating Emissions from Power Stations
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Nassar et al., 2017, 2023

• The OCO-2/3 observations capture a factor of two temporal variations of emissions from power 
stations . 

• The uncertainty can be up to about 20% of emissions. 



Emission Estimations of  from Power Stations

• Uncertainty in wind observations is one of the leading sources of uncertainty in power 
plant emission estimations. 

Nassar et al., 2017

CO2 transport from a power plant depends on the horizontal wind speed at the plume height. A power plant
can have multiple stacks, so we calculate the mean stack height from publicly available sources or assume
250 m if no information is available. We read the u and v wind vectors for the levels above and below the
mean stack height from the two meteorological data sets and vertically linearly interpolate to the mean stack
height. ERA-Interim winds are reported as instantaneous values at 6 h intervals, so we also linearly interpolate
between the two nearest temporal points. For MERRA2, which is provided as 3 h average winds, we use the
closest time directly. The interpolated u and v wind vectors are converted to a scalar wind speed and
direction/bearing (0–360°) with 0° defined as due north.

KML files are generated to visualize the parallelogram-shaped OCO-2 soundings in Google Earth with a custo-
mized XCO2 color scale alongwith wind vector arrows centered on each source. The XCO2 value mapped with
the KML file and primarily used in the emission estimate is a bias corrected value. Uncorrected XCO2 data are
included in the file as well as two variations on the bias correction (details given as supporting information).

Aqua MODIS imagery of clouds, smoke, and surface properties can be viewed together with OCO-2 data in
Google Earth since the Aqua satellite follows OCO-2 by 6 min, flying in formation in the A-Train. We look
for overpasses or flybys with an enhancement in the approximate wind direction. We reject any where the
wind blows away from the swath, those in regions with complex terrain, or where the swath is broken up
due to cloud or aerosol, since neighboring observations could be biased, but if nadir observations are lost
over a small body of water, we retain confidence in the remaining observations. With these criteria, there
is only a very small number of good overpasses for a given power plant as shown in Table S1.

2.2. Plume Model and Fitting

For each good overpass or flyby, we take the magnitude of the vector mean of the ERA-Interim and MERRA2
winds as the wind speed to model the plume. The plume model equations used are slightly modified from
those in Bovensmann et al. (2010):
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where V is the CO2 vertical column in g/m2 at and downwind of the point source. The x direction is parallel to
the wind direction and the y direction perpendicular to the wind direction. V depends on the emission rate F
(in g/s), the across wind distance y (in m), wind speed u (in m/s), and the standard deviation in the y direction,
σy (in m). Here x is specified in meters and xo = 1000 m is a characteristic length so that the argument of the
exponent is dimensionless. a is the atmospheric stability parameter, which we determine by classifying a
source environment by the Pasquill-Gifford stability, which depends on the surface wind speed, cloud cover
and time of day (Pasquill, 1961).The surface wind speed and cloud cover are taken from ERA-Interim.

We select a region of the OCO-2 swath (preferably upwind and thus not affected by the source) as the back-
ground and average the XCO2 from these points. The model plume is then defined as the area from the x axis
(wind vector) down to a threshold of 1% intensity in the positive/negative y directions. We then define the
observed plume based on the points that correspond to the model plume, accounting for the light path.
We determine where the incoming and reflected solar radiation would intersect the plume, assuming a
two-dimensional plume at the mean stack height and ignoring plume rise (see Figure S1 and supporting
information). Once the observed plume is defined as the points geometrically corresponding to a 1% cutoff
of the model plume, the background XCO2 average in ppm is subtracted from it to get the observed XCO2

enhancement in ppm. To convert the model enhancements from g/m2 to ppm, we use the mean conversion
factor k, which we calculate from the background values in g/m2 and ppm given in the data files, where
k = VCO2/XCO2. This is reliable only if there are no large or abrupt changes in topography for the background.
If the wind is nearly parallel to the swath, we truncate the plume at some distance from the source to avoid
very small relative enhancements and plume modeling over long space/time scales.

With the observed and model plume defined as XCO2 enhancements in ppm, we then calculate the model
versus observation correlation coefficient (R). This process is repeated testing adjustments to the wind
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Our best example of detecting and quantifying emissions from a power plant using OCO-2 comes from a
flyover of the Singrauli region of India (Figure 3) with multiple large coal plants in close proximity. Our initial
aim was to quantify emissions from the Vindhyachal and Singrauli power plants, which emitted 32.4 and
14.8 MtCO2/yr, respectively, (CARMA future values). However, due to the spatial gradients and the strength
of the XCO2 enhancement (~10 ppm) in a 23 October 2014 flyby of these power plants, we found another
major source directly below the enhancement using Google Earth. The new source detected was the
Sasan Ultra Mega Power Plant (UMPP), which was commissioned between 2013 and 2015. Sasan only appears
in CARMA as a future emitter with an estimate of 33.7 MtCO2/yr, but this estimate assumes a very high
emission intensity (1.26 tCO2/MWh).

Sasan’s Clean Development Mechanism (CDM) application to the UNFCCC (Greenhouse Gas Reductions
Through Super-Critical Technology-Sasan Power Ltd. Clean Development Mechanism Project Design
Document Form (CDM-PDD), version 3, 28 July 2006) states that at full capacity it was expected to emit
26.38 MtCO2/yr. It has since received credits for certified emission reductions since its supercritical coal
technology is claimed to emit ~9% less CO2 than standard coal combustion. Vindhyachal and Singrauli are
14 and 16 km northeast and upwind of Sasan, respectively, so we account for their emissions in the OCO-2
swath (Figures 3d and 3e), but two other large coal power plants, Rihand (20.3 MtCO2/yr) and Anpara

Table 1
Emission Estimates and Related Information for Multiple Coal-Fired Power Plants

Coal power
plant Country Date

OCO-2 mode and
configuration

Reported emissions
(ktCO2/d)

Estimated
emissions
(ktCO2/d)

Number of OCO-2
points in plume /

background R

Largest
source of
uncertainty

Westar USA 2015/12/04 Nadir, direct overpass 26.67a 31.21 ± 3.71 130/126 0.468 Enhancement
Ghent USA 2015/08/13 Nadir, flyby (~8 km) 29.17a 29.46 ± 15.58 33/284 0.707 Wind
Gavin & Kyger USA 2015/07/30 Nadir, direct Overpass 50.54a 48.66 ± 10.37 17/489 0.688 Background
Sasan India 2014/10/23 Nadir, direct overpass 60.23b 67.93 ± 9.98 167/457 0.667 Other sources
Sasan India 2014/11/10 Glint, flyby (~4.5 km) 60.23b 89.44 ± 7.39 49/290 0.695 Background
Matimba South Africa 2014/11/07 Glint, flyby (~7 km) 66.25c 33.05 ± 10.57 22/269 0.473 Wind
Matimba South Africa 2016/10/11 Glint, direct overpass 66.25c 33.66 ± 3.42 45/260 0.557 Wind
aEPA reported daily emissions from Air Markets website (https://ampd.Epa.Gov/ampd/). bDaily mean converted from Sasan CDM application annual value with 5
of 6 units commissioned by March 2015. cDaily mean calculated from CARMA database annual value (2009 and future were the same in this case).

Figure 3. Same as Figure 1 for a direct overpass of a large power plant in India with multiple other power plants nearby. Model simulations here include the primary
source (Sasan) plume and two secondary source plumes (Vindhyachal and Singrauli) superimposed.
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Gaussian plume model



About 10% of  Emissions from Isolated Power Stations 
were Captured by OCO-2/3 over Four Years

Lin et al., ACP, 2023

• The success of OCO-2/3 in observing anthropogenic emissions inspired a fleet of 
future satellite missions, such as GOSAT-GW and CO2M. 



Maximizing the Impact of  GHG Observations on 
Fossil Fuel Emission Estimation 

• OCO-2/3 observations demonstrate the feasibility to use space-
borne observations to quantify emissions from urban domes 
and power stations.  
• Reduce uncertainties in transport (winds, PBL, dynamics, and etc.)
• Increase observational coverage (e.g., GOSAT-GW, CO2M, Carbon-I, 

EMIT, Carbon Mapper etc.).   
• Regions with persistent cloud and aerosols would be still challenging. 

• Multi-species to learn sectorial information.
• Computational speed (e.g., ML) 



About Half  of  the CO2 Anthropogenic Emissions are 
Absorbed by Land and Ocean

Friedlingstein et al., 2020



Inferring Natural Carbon Fluxes with Atmospheric CO2 Observations
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The Spatial Distributions of  CO2 Sources and 
Sinks over Land and Ocean 

gC/m2/year gC/m2/year

Fossil Fuel + Terrestrial biosphere fluxes 

• Annual mean fluxes averaged over 2015-2020; 
• It is the average over 13 top-down inversion models that have different assumptions of prior fluxes, prior flux 

uncertainties. These models use different transport models and inversion methodologies.  

Byrne et al., ESSD 2022, 

Ocean fluxes



Byrne et al.,ESSD 2022, 

Country-scale Carbon Budget 

Fossil + natural carbon flux (GtC/year)

Uncertainties (GtC/year)

Negative: sink;
Positive: source. 

• Uncertainties of net carbon exchange at country scale are 
dominated by the uncertainty in natural carbon fluxes;  

•   
• Uncertainties are large over small tropical countries;
• Uncertainties are the spread among 13 models, so it 

includes  uncertainties from transport, priors, 
observations, inversion methodology, fossil fuel, etc.  

Natural land carbon flux (GtC/year)



Providing Insights on the Interannual 
Variations of  Natural Carbon Cycle 

Liu et al., Science Advances, 2024



Detecting the Impact of  Extreme Climate Events on Natural 
Carbon Cycle

Byrne et al., AGU-Advances, 2021
• OCO-2 + TROPOMI CO to constrain both reduction of sink due to drought and C release from biomass burning; 
• Dense XCO2 observations from OCO-2 enable quantification of impact of extreme climate events on regional carbon 

cycle;  
• The net carbon release due to drought and fire during Oct 2019- May 2020 is larger than annual Australian fossil fuel 

emissions; 
• Extreme climate events play outsized role in the global carbon cycle changes; global CO2 observation coverage 

is critical to continue monitor the impact of ever-increasing extreme climate events on carbon cycle. 



Sensitivity of  Spatial Flux Distributions to the Atmospheric 
Transport

Schuh et al., 2019,  2022

• Same surface flux forcing for both TM5 and GEOS-Chem 
model.

• The vertical transport of GEOS-Chem is more sluggish. 

Satellite Surface

Chinese Natural Carbon Sink 

ppm



Non-negligible Impact of  Uncertainties in 
Reanalysis on Simulated CO2 Concentration

Averaged over Feb

• The impact of uncertainties in reanalysis on CO2 concentration can be more than 1.0ppm. 

Liu et al., GRL, 2011

An order of a few meter per second 



Inferring Natural Carbon Fluxes with Atmospheric CO2 Observations
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Sensitivities of  Posterior Fluxes to Assumed Prior 
Fluxes and their Uncertainties

Philip et al., 2019

• Prior fluxes: NASA-CASA; CASA-GFED, LPJ
• Over regions where the observation coverage is dense, the 

range of posterior fluxes have been reduced. 



The Assumed Prior Flux Uncertainties have Relatively 
Larger Impact over Regions with Observations

Philip et al., 2019
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3D-Production of  CO2 from Chemical Reactions (CO, 
CH4, and NMVOCs)

• Chemical production is higher over the tropics where biomass 
burning are

• The total magnitude of   3D-CO2 production is about 1.1GtC with 
uncertainty. 

• Uncertainty source:  OH, NMVOC, CO etc. 

Wang et al., ERL, 10.1088/1748-
9326/ab9795, 2020



Non-negligible Impact on Column CO2 
Concentrations over the Tropics

ppm

Wang et al., ERL, 10.1088/1748-
9326/ab9795, 2020



Inferring Natural Carbon Fluxes with Atmospheric CO2 Observations
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Fossil Fuel Emission Uncertainties

2570 A. P. Ballantyne et al.: Audit of the global carbon budget

2.2 Errors and uncertainties in fossil fuel emission
estimates

The process that currently accounts for the greatest flux of
CO2 to the atmosphere is the combustion of fossil fuels and
cement production (i.e.,EF). Because fossil fuel emission es-
timates are derived from economically constrained statistics
of energy production and consumption, the relative errors in
fossil fuel emission estimates are fairly small and typically
between 5 and 10% (Andres et al., 2014). However, because
fossil fuel emissions currently account for > 90% of total
emissions, even relatively small errors can result in poten-
tially large uncertainties in absolute C uptake calculated on
the global scale (Francey et al., 2013; although see Raupach
et al., 2013). Therefore, identifying the sources of error in
fossil fuel emission estimates ÊF is critical to constraining
uncertainty in the global carbon budget:

ÊF = EF ⇥ (1+ "F), (3)

where "F , the error factor in estimating fossil fuel emissions,
has both a spatial and temporal component.

2.2.1 Spatial error component of fossil fuel emissions

There are many sources of error in estimating fossil fuel
emissions. In particular, fossil fuel emission inventories dif-
fer in their inclusion of CO2 emissions from cement produc-
tion and international transport, as well as their treatment of
gas flaring (Andres et al., 2012). These subtle differences
can equate to considerable discrepancies between different
inventories (Fig. 3). Another significant source of error in
global emission inventories is due to the different account-
ing practices of different nations. Although emission inven-
tories are often based on standardized surveys of energy con-
sumption, different institutions have different protocols for
missing data and how units of energy are converted into CO2
emissions (Andres et al., 2012). In some instances there may
even be large discrepancies between the sum of provincial
emission estimates and national emission estimates (Guan
et al., 2012). All of these factors lead to uncertainties in
emission estimates. While there is a general consensus that
emission errors in developed nations are much lower than in
developing nations, emissions are increasing at a faster rate
simply because these nations are developing rapidly.
For this analysis, countries were grouped into geo-

graphic regions as specified by the United Nations Statistics
Division (http://unstats.un.org/unsd/methods/m49/m49regin.
htm). Uncertainties for each country (see Supplement, Ta-
ble S1; Andres et al., 2014) were used to create regional
maximum error distributions for each emission inventory us-
ing a bootstrapping method, with the highest emitters within
the region contributing the most to the error distributions.
This effect was achieved by weighting the sampling proba-
bility (P(s)) by the relative contribution of each country’s
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Figure 3. Fossil fuel emission estimates and their uncertainties from
1960 to 2010. The three inventories (top panel) compared are from
BP (British Petroleum; black), the Emission Database for Global
Atmospheric Research (EDGAR: green), and the Carbon Dioxide
Information and Analysis Center (CDIAC; red). All inventories also
include cement production. Thin grey traces represent the Monte
Carlo simulations of uncertainty for the fossil fuel emission inven-
tories (N = 3⇥ 500= 1500). Errors are estimated by deriving re-
gional error distributions and then randomly drawing from these
distributions for error estimates of individual nations (bottom panel)
where error estimates are modified from Andres et al. (2014). Emis-
sion errors are reported as relative errors of total emissions by na-
tion, and emission errors for Antarctica are for the Antarctic fishing
fleet. See Supplement, Table 1, for national errors.

emissions (EC) to the total emissions within that region
(ER) : P(s) = EC/ER .
The bootstrapping method used 1000 iterations of the

mean of sampled errors to produce a smoothed distribu-
tion for regional maximum errors. This method allows for
bounded fluctuations in country-level annual errors that re-
late directly to regional errors. To constrain the temporal
component of the emission errors (Sect. 2.2.2), 10 random
samples were drawn from the corresponding error distribu-

Biogeosciences, 12, 2565–2584, 2015 www.biogeosciences.net/12/2565/2015/

Hogue et al., 2016

Friedlingstein et al., ESSD, 2024



Impact of  Fossil Fuel Emission Uncertainties on 
Natural Carbon Flux Estimation 

Oda et al., ERL, 2023

Column CO2 signal in July  due to the 
difference between ODIAC and GCP

Biosphere flux estimation differences 
between ODIAC and GCP 

• Fossil fuel emissions and natural carbon fluxes 
offset each other.  



Global Stocktake: A Process to Achieve 
Carbon Neutrality 

• Countries are required to submit the 
national GHG inventories (NGHGI) under 
the IPCC guideline;

• Annex-I countries report annual 
emissions and removals;

• The GHGI are based on emission factors 
and activity data or process-based 
models. 

• National GHG inventories (NGHGI) only 
reports CO2 emissions and removals 
from managed land. 

•   



Use of  Top-Down Flux inversion Results to Inform NGHGI: 
Accounting for Lateral Transport and Harvest

Byrne et al., ESSD, 2022

• Net carbon fluxes from atmospheric 
CO2 flux inversion quantifies vertical 
carbon exchange between 
atmosphere and surface.

• National GHG inventories (NGHGI) 
only reports CO2 emissions and 
removals from managed land. 

• Comparison between top-down and 
NGHGI needs to account for lateral 
transport, crop and wood harvest 
and trade. 



The Agreement between Top-Down Inversions 
and NGHGI Varies across Countries
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3 Results for net land CO2 fluxes 
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Figure 3 | Net land CO2 fluxes (unit: TgC yr-1) during 1990-2021 from China (CHN), United States (USA), European Union (EUR), 

Russia (RUS), Canada (CAN), Kazakhstan (KAZ), Mongolia (MNG), India (IND), Brazil (BRA), Democratic Republic of the Congo 

(COD), South Africa (ZAF), and Australia (AUS). By convention, CO2 removals from the atmosphere are counted negatively, while CO2 

emissions are counted positively. The black dots denote the reported values from NGHGIs. The light green color denotes the in-situ-alone 

CO2 inversion (n=5) set while the dark green color denotes the set that uses satellite data (n=4). The green lines denote the median of land 415 
fluxes over managed land of CO2 inversions, after adjustment of CO2 fluxes from lateral transport by rivers, crop, and wood trade. When all 

inverse models within the inversion sets (in-situ: n=5; satellite: n=4) have available data for the same time interval, their median values are 

depicted as solid green lines. Otherwise, when the inversion sets have incomplete inverse models within the time interval (in-situ: n<5; 

satellite: n<4), their median values are represented as dashed green lines. The shading area denotes the min-max range of inversions. The 

red dashed lines denote the median of inversions presented by the previous study (Deng et al., 2022).  420 
Fig 3 presents the time series of land-to-atmosphere CO2 fluxes for the selected countries listed in Table 2. The median of 

inversions across the 12 countries shows significant interannual variability, reflecting the impact of climate variability on 

terrestrial carbon fluxes and annual variations of land-use emissions. 

The adjustments of lateral CO2 flux generally tend to lower land carbon sinks or increase land carbon emissions, especially in 

CHN, USA, EUR, RUS, CAN, IND, and BRA. However, even with these adjustments, in countries of temperate latitudes, the 425 

median values of the five in-situ-alone inversion ensemble all indicate a net carbon sink during the 2010s, such as CHN with 
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Deng et al., ESSD, 2024
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• Non-Annex-1 countries reports have long 
latency and less frequent. 

• Top-down inversion results provide an 
independent evaluation of NGHGI. 

• Top-down inversions have much larger 
interannual variability than NGHGI. 



Maximizing the Impact of  GHG Observations on 
Natural Carbon Flux Estimation and Climate Policy 

• Observations from OCO-2/3 have advanced our understanding of the 
response of regional carbon fluxes to natural climate perturbations and 
large -scale distributions of sources and sinks.  

• Reduce uncertainties in transport (dynamics, reanalysis etc.)

• Better characterize uncertainties in prior fluxes and transport.

• Increase observational coverage (e.g., GOSAT-GW, CO2M).   

• 3D-CO2  sources 

• Leverage fossil fuel emission estimation capability in natural carbon flux 
estimation. 

• Better characterize lateral transport and crop/wood harvest to support 
NGHGI. 



Increasing Observation Coverage to Better 
Quantify the Impact of  Extreme Climate Events 

Byrne et al., JGR-Atmospheres, 2024

OSSE

The impact of 2019 mid-west flood  

• Bottom-up:  based on 
greenness and SIF 
observations

OCO-2 Ideal LEO


