

Maximizing the Role of Atmospheric CO₂ Observations in Shaping Carbon Cycle Science and Carbon-Climate Policy

Junjie Liu Jet Propulsion Laboratory, California Institute of Technology, Pasadena

KISS workshop

Oct 7th, 2024

© Copyright, 2024

Increasing in Atmospheric CO₂ is the Primary Driver for Climate Change

()

- Year 2023 was the hottest year since 1850s;
- Atmospheric CO2 concentration has been accelerating.

- Future climate change is closely related to the atmospheric CO₂ concentration.
- The changes of atmospheric CO₂ concentration is the net effect of sources and sinks.

The Variability of Atmospheric CO2 is Driven by Atmospheric Transport and Surface CO₂ Fluxes

6-hourly column CO2 concentration simulations

- The spatiotemporal gradient of atmospheric CO₂ concentration is the result of both atmospheric transport and surface fluxes.
- Satellite observations (e.g., OCO-2) capture a snapshot of atmospheric CO2 concentration.

https://svs.gsfc.nasa.gov/

OCO-2 (since 09/2014): Sun-synchronous orbit, pole-topole coverage Footprint size: 1.9x2.3km² The CO2 north-south gradient is about 5-7 ppm The accuracy of XCO2 retrievals is about 1.0ppm.

1.0ppm.OCO-3 (since 08/2019):No observations under cloud, high aerosol, International Space Station,
and low light conditions.±52°N/S coverage

Dry-Air Column CO₂ [pc

405.0 407.5 410.0 412.5 415.0 417.5 420.0 422.5 425.0

OCO-3 XCO₂ (B10.4)

Credit: T. Kurosu

08/06/19 - 08/06/19 - 08/09/19

OCO-2/3 Detect CO₂ Signals from Fossil Fuel Emissions in Large Urban Areas and Power Plants

OCO-3 (ISS) Snapshot Area Maps

What are the barriers to advancing quantification of fossil fuel emissions and improving our understanding of natural carbon fluxes?

Calculating the Sensitivity of CO₂ Concentration to the Fluxes: X-STILT in Linking Concentrations to Emissions

STILT: Stochastic **Time-inverted** Lagrangian Transport Model Column footprint = f(PBLH, wind field, Satellite sensitivity...)

Credit: D. Wu

Calculating the Sensitivity of CO2 Concentration to the Fluxes: X-STILT in Linking Concentrations to Emissions

STILT: Stochastic **Time-inverted** Lagrangian Transport Model Column footprint = f(PBLH, wind field, Satellite sensitivity...)

Credit: D. Wu

Urban Emission Characteristics and Uncertainties

• Uncertainty sources: observational error and transport errors

Wu et al., ERL, 2020

Urban Emission Characteristics and Quantification

77 cities

- Wilmot e t al., 2024
- Captures ~16% of global carbon dioxide emissions, similar in magnitude to the total direct emissions of the United States or Europe.
- Uncertainties: aerosols and cloud coverage

Estimating Emissions from Power Stations

Nassar et al., 2017, 2023

- The OCO-2/3 observations capture a factor of two temporal variations of emissions from power stations .
- The uncertainty can be up to about 20% of emissions.

Emission Estimations of from Power Stations

$$V(x,y) = \frac{F}{\sqrt{2\pi}\sigma_y(x)u} e^{-\frac{1}{2}\left(\frac{y}{\sigma_y(x)}\right)^2}$$
$$\sigma_y(x) = a \cdot \left(\frac{x}{x_o}\right)^{0.894}$$

Gaussian plume model

	Na	ssar	et a	l., 2	017
--	----	------	------	-------	-----

Table 1								
TADIE T Emission Estimates and Related Information for Multiple Coal-Fired Power Plants								
Coal power plant	Country	Date	OCO-2 mode and configuration	Reported emissions (ktCO ₂ /d)	Estimated emissions (ktCO ₂ /d)	Number of OCO-2 points in plume / background	R	Largest source of uncertainty
Westar	USA	2015/12/04	Nadir, direct overpass	26.67 ^a	31.21 ± 3.71	130/126	0.468	Enhancement
Ghent	USA	2015/08/13	Nadir, flyby (~8 km)	29.17 ^a	29.46 ± 15.58	33/284	0.707	Wind
Gavin & Kyger	USA	2015/07/30	Nadir, direct Overpass	50.54 ^a	48.66 ± 10.37	17/489	0.688	Background
Sasan	India	2014/10/23	Nadir, direct overpass	60.23 ^b	67.93 ± 9.98	167/457	0.667	Other sources
Sasan	India	2014/11/10	Glint, flyby (~4.5 km)	60.23 ^b	89.44 ± 7.39	49/290	0.695	Background
Matimba	South Africa	2014/11/07	Glint, flyby (~7 km)	66.25 ^c	33.05 ± 10.57	22/269	0.473	Wind
Matimba	South Africa	2016/10/11	Glint, direct overpass	66.25 ^c	33.66 ± 3.42	45/260	0.557	Wind
-								

Uncertainty in wind observations is one of the leading sources of uncertainty in power plant emission estimations.

About 10% of Emissions from Isolated Power Stations were Captured by OCO-2/3 over Four Years

• The success of OCO-2/3 in observing anthropogenic emissions inspired a fleet of future satellite missions, such as GOSAT-GW and CO2M.

Lin et al., ACP, 2023

Maximizing the Impact of GHG Observations on Fossil Fuel Emission Estimation

- OCO-2/3 observations demonstrate the feasibility to use spaceborne observations to quantify emissions from urban domes and power stations.
- Reduce uncertainties in transport (winds, PBL, dynamics, and etc.)
- Increase observational coverage (e.g., GOSAT-GW, CO2M, Carbon-I, EMIT, Carbon Mapper etc.).
 - Regions with persistent cloud and aerosols would be still challenging.
- Multi-species to learn sectorial information.
- Computational speed (e.g., ML)

About Half of the CO2 Anthropogenic Emissions are Absorbed by Land and Ocean

Friedlingstein et al., 2020

Inferring Natural Carbon Fluxes with Atmospheric CO2 Observations

The Spatial Distributions of CO₂ Sources and Sinks over Land and Ocean

Fossil Fuel + Terrestrial biosphere fluxes

Ocean fluxes

- Annual mean fluxes averaged over 2015-2020;
- It is the average over 13 top-down inversion models that have different assumptions of prior fluxes, prior flux uncertainties. These models use different transport models and inversion methodologies.

Byrne et al., ESSD 2022,

Country-scale Carbon Budget

Uncertainties (GtC/year)

- Uncertainties of net carbon exchange at country scale are dominated by the uncertainty in natural carbon fluxes;
- Uncertainties are large over small tropical countries;
- Uncertainties are the spread among 13 models, so it includes uncertainties from transport, priors, observations, inversion methodology, fossil fuel, etc.
 Negative: sink;

Positive: source.

Byrne et al., ESSD 2022,

Providing Insights on the Interannual Variations of Natural Carbon Cycle

Detecting the Impact of Extreme Climate Events on Natural Carbon Cycle

Byrne et al., AGU-Advances, 2021

- OCO-2 + TROPOMI CO to constrain both reduction of sink due to drought and C release from biomass burning;
- Dense X_{CO2} observations from OCO-2 enable quantification of impact of extreme climate events on regional carbon cycle;
- The net carbon release due to drought and fire during Oct 2019- May 2020 is larger than annual Australian fossil fuel emissions;
- Extreme climate events play outsized role in the global carbon cycle changes; global CO₂ observation coverage is critical to continue monitor the impact of ever-increasing extreme climate events on carbon cycle.

Sensitivity of Spatial Flux Distributions to the Atmospheric Transport

- Same surface flux forcing for both TM5 and GEOS-Chem model.
- The vertical transport of GEOS-Chem is more sluggish.

Schuh et al., 2019, 2022

Non-negligible Impact of Uncertainties in Reanalysis on Simulated CO₂ Concentration

Averaged over Feb

The impact of uncertainties in reanalysis on CO2 concentration can be more than 1.0ppm.

Liu et al., GRL, 2011

Inferring Natural Carbon Fluxes with Atmospheric CO2 Observations

Sensitivities of Posterior Fluxes to Assumed Prior Fluxes and their Uncertainties

- Prior fluxes: NASA-CASA; CASA-GFED, LPJ
- Over regions where the observation coverage is dense, the range of posterior fluxes have been reduced.

Philip et al., 2019

The Assumed Prior Flux Uncertainties have Relatively Larger Impact over Regions with Observations

3D-Production of CO₂ from Chemical Reactions (CO, CH4, and NMVOCs)

- Chemical production is higher over the tropics where biomass burning are
- The total magnitude of 3D-CO2 production is about 1.1GtC with uncertainty.
- Uncertainty source: OH, NMVOC, CO etc.

Wang et al., *ERL*, 10.1088/1748-9326/ab9795, 2020

Non-negligible Impact on Column CO2 Concentrations over the Tropics

Wang et al., *ERL*, 10.1088/1748-9326/ab9795, 2020

Inferring Natural Carbon Fluxes with Atmospheric CO2 Observations

Fossil Fuel Emission Uncertainties

Impact of Fossil Fuel Emission Uncertainties on Natural Carbon Flux Estimation

Oda et al., ERL, 2023

Global Stocktake: A Process to Achieve Carbon Neutrality

- Countries are required to submit the national GHG inventories (NGHGI) under the IPCC guideline;
- Annex-I countries report annual emissions and removals;

- The GHGI are based on emission factors and activity data or process-based models.
- National GHG inventories (NGHGI) only reports CO₂ emissions and removals from managed land.

Use of Top-Down Flux inversion Results to Inform NGHGI: Accounting for Lateral Transport and Harvest

- Net carbon fluxes from atmospheric CO2 flux inversion quantifies vertical carbon exchange between atmosphere and surface.
- National GHG inventories (NGHGI) only reports CO₂ emissions and removals from managed land.
- Comparison between top-down and NGHGI needs to account for lateral transport, crop and wood harvest and trade.

Byrne et al., ESSD, 2022

The Agreement between Top-Down Inversions in System and NGHGI Varies across Countries

Non-Annex-1 countries reports have long latency and less frequent.

et :

National Inventory

- Top-down inversion results provide an independent evaluation of NGHGI.
- Top-down inversions have much larger interannual variability than NGHGI.

Deng et al., ESSD, 2024

Maximizing the Impact of GHG Observations on Natural Carbon Flux Estimation and Climate Policy

- Observations from OCO-2/3 have advanced our understanding of the response of regional carbon fluxes to natural climate perturbations and large -scale distributions of sources and sinks.
- Reduce uncertainties in transport (dynamics, reanalysis etc.)
- Better characterize uncertainties in prior fluxes and transport.
- Increase observational coverage (e.g., GOSAT-GW, CO2M).
- 3D-CO2 sources
- Leverage fossil fuel emission estimation capability in natural carbon flux estimation.
- Better characterize lateral transport and crop/wood harvest to support NGHGI.

Increasing Observation Coverage to Better Quantify the Impact of Extreme Climate Events

