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The data Classical PCA Forward Modeling Conclusion

The problem(s)

Assume you have an image in which you are looking for a planet.

T (n) = Iψ0 (n) + εA(n).

We call ψ the random state of the telescope+instrument at the exposure.

The problem we want to solve is to figure out what are the relative
contributions of the light diffracted within the instrument and of an
hypothetical astrophysical signal.

Solutions

We can have a really good model of our instrument.

We “construct” a really good model of our instrument based on its data
history (science frames+telemetry).

We get more realizations of Iψ for which we are sure that there is no
astrophysical signal. We subtract them from T .
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Observing strategies

How to get more realizations of the instrument response?

Take images of other sources.

εA(n)? = Iψ0 (n)− Iψ1 (n)

What to watch for:

The telescope + instrument must be
very stable.

The alignment of the images needs to
be very precise (the star needs to be on
the same fraction of a pixel).
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Observing strategies: PSF subtraction

Schneider et al. (2014)



The data Classical PCA Forward Modeling Conclusion

Observing strategies

How to get more realizations of the instrument response?

Take images of other sources.

Take images at other wavelengths/telescope orientations.

R(n) = Iψ1 (n) + εA(n−δn1r ,θ ) or R(n) = Iψ1 (n−δn1r ,θ ) + εA(n)

Credit: P. Ingraham and the GPI team
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LOCI - KLIP

Solving the least squares
problem:

min{ck}{
∑n

(
T (n)−∑

K
k=1 ckRk(n)

)2
}

.

Equivalent to:

E [RR]C = T

where E [RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.

Several routes to invert this

Tweak set up of the inverse problem
(geometry, selection of references)

Regularize of the inverse problem (SVD
truncation, PCA)

K pixels in zone

N
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-

…
…

Image, or part of image
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This is where the magic happens

Marois et al. (2008), Marois et al. (2010)
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This is where the magic happens

Oppenheimer et al. (2013), Pueyo et al. (2015)
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This is where the magic happens

Soummer et al. (2011)
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This is where the magic happens

Rameau et al. (2012)
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Problem....PSF subtraction algorithms also subtract the signal

The least squares speckles fitting in the presence of signal can be written as:

min{ck}

{
∑n
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k=1(ck + δck)[Iψk (n) +Ak(n)]

)2
}

.

K pixels in zone

N
 references

-

…
…

Image, or part of image

++

Stellar PSF Coefficients 

 Perturbation to coefficients due to faint signal  

+

Contribution of stellar PSF Contribution of faint signal



The data Classical PCA Forward Modeling Conclusion

Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. This can be done in conjunction with any of the algorithms
described before. Marois et al. (2010), Lagrange et al. (2012).
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. Example of a grid search for astrometry and photometry,
Morzinski et al. (2015).
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Figure D4. Grid search in the M ′ images for the best-fit photometry and astrometry of the planet, using PCA with 20 modes. Left
column: x position (detector coordinates); Center column: y position (detector coordinates); and Right column: flux ratio. Top row:
Parabola fit, local regions; Second row: Gaussian fit, local regions; Third row: Parabola fit, uniform regions; and Bottom row: Gaussian
fit, uniform regions.
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. Example of an MCMC for astrometry and photometry, Bottom et
al. (2014).

– 5 –

Fig. 1.— Left: a) the background-subtracted target median image, b) the background-subtracted

reference star median image, c) the background-subtracted point-spread function image, d) best-

fitting model from the MCMC algorithm combining images b) and c) attempting to match a) as

explained above. The stretch is nonlinear to better show the companion and speckles. Right:

All the one and two dimensional projections of the posterior probability distributions of the pixel

shifts (xc, yc, the reference background scaling factor (Ra, and the PSF amplitude used to fit

the companion Pa. The two-dimensional projections show very little covariance among any two

parameters, and the marginal distribution histograms (along the diagonal) are nicely peaked.
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables.

Main drawbacks

The speckle subtraction algorithm has to be used each time around
(involves a matrix inversion).

There is no guarantee that the cost-function minimized/likelihood explored
does not feature local minima. One might get stuck in them.

In general these are not limiting factors in ”small dimensional
configurations” ( astrometry and photometry = 3 dimensions).

This becomes a severe limiting factor when trying to get spectrum
(astrometry and spectrum = 39 dimensions with GPI).
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:

PCA(Speckles +Signal) = PCA(Speckles) +Signal δPCA(Speckles)

...and this applies to any algorithm relying on covariances. Pueyo (2016).
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The linear model works:

If the astrophysical source is faint when compared to the speckles.

If the astrophysical source as bright as the speckles/brighter, and the
algorithm parameters are chosen accordingly (not too aggressive).
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The details

Perturbation of the covariance matrix

CRR = R(x) R(x)T

CRR = I(x) I(x)T + ε aAλp0
,δ (x)I(x)T + ε I(x)Aλp0

,δ (x)T aT + ε
2aAλp0

,δ (x)Aλp0
,δ (x)T aT

CRR = CII + ε CAδ I +O(ε
2).

Perturbation of the eigenvalues/vectors of covariance matrix

Γk = Λk + ε VT
k CAδ IVk

Uk = Vk + ε

NR

∑
j=1,j 6=k

VT
j CAδ IVk

Λk −Λj
Vj

Perturbation of the Principal Components

Yk (x) = Zk (x) + ε∆Zk (x)

ε∆Zk (x) = εaT
λ

∆Zk
λ (x) = f T

λ
∆Zk

λ (x)

∆Zk
λ (x) =

Sλ√
Λk

[
VkAδ (x)I(x)TVk Zk (x) + VkAλp0

δ (x) + ...

NR

∑
j=1,j 6=k

√
Λj

Λk −Λj
(VkAδ (x)I(x)TVj + VjAδ (x)I(x)TVk )Zj (x)

]
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What does it mean?

Yk(x) = Zk(x) + ε∆Zk(x) . We can rank them in order of ||ε∆Zk(x)/Zk(x)||.

Three main terms:

over-subtraction: unperturbed
Principal Components Zk(x). Scales as
||Zk(x)||= 1.

direct self-subtraction: presence of an
astrophysical source at various
parallactic angles and wavelengths in
the observing sequence multiplied by
LOCI coefficient. Scales as ε/

√
Λk .

indirect self-subtraction: perturbation
in the LOCI coefficient. Scales as
ε/Λk .
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Pueyo et al. (2015).
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What does it mean?

Yk(x) = Zk(x) + ε∆Zk(x) . We can rank them in order of ||ε∆Zk(x)/Zk(x)||.

Three main terms:

over-subtraction: unperturbed
Principal Components Zk(x). Scales as
||Zk(x)||= 1.

direct self-subtraction: presence of an
astrophysical source at various
parallactic angles and wavelengths in
the observing sequence multiplied by
LOCI coefficient. Scales as ε/

√
Λk .

Esposito et al. (2012)

indirect self-subtraction: perturbation
in the LOCI coefficient. Scales as
ε/Λk . Brandt et al. (2013).
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Application to spectral extraction

Application:  
YJHK Spectrum of  Pic b 

Chilcote, Pueyo, De Rosa, et al. In prep. 

low-gravity and young 
(Faherty et al. 2013) 
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Application to astrometry

Wang et al. (2016).
18 Wang et al.

Figure B1. The data, best fit forward model, and residual map after the model as been subtracted from the data for each of
the twelve datasets. In each row, we plot two datasets. For each dataset, we plot the data (left), best fit forward model (center),
and residual map (right) on the same color scale. While the scale of each dataset is di↵erent, zero is mapped to the same color
for all the datasets.
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Application to astrometry

Wang et al. (2016).
8 Wang et al.

Figure 2. Posterior distribution of the four parameters in the MCMC fit for the astrometry for the 2014 November 18 epoch.
The vertical dashed lines in the marginalized posterior distribution plots indicate the 16th, 50th, and 84th percentile values.

of the later datasets where the planet is observed closer

in, we were limited by the SNR of the planet and un-

able to achieve 1 mas precision. In the 2015 December

5 dataset, the noise was higher due to the planet be-

ing fainter relative to the star in J -band. In the 2016

January 21 dataset, a combination of poor seeing and

a small amount of usable data limited our astrometric

precision.

Overall though, this GPI � Pic b data is an excel-

lent demonstration for Bayesian KLIP-FM Astrometry

as the planet is bright enough that the extended PSF

features, such as the negative self-subtraction lobes, are

clearly seen and provide significant information to con-

strain the position of the planet. For fainter planets,

the extended features are harder to distinguish from the

noise. As one of the main advantages of BKA over tech-

niques that do not forward model the PSF is being able

to forward model the extended self-subtraction lobes,

the astrometric improvement would not be as large for

lower signal-to-noise ratio planets. There still should

be some improvement though due to accurately mod-

elling the over-subtraction on the core of the PSF and

small contributions from the extended features even if

they are hard to distinguish from noise. Regardless, in

addition to the improved precision, BKA should also

more accurately estimate the uncertainties as it fits for

the correlation scale of the noise at the location of the

planet.

Table 2. Astrometric Error Budget and Measured Astrometry of � Pic b

Dataset

Planet x/y

Uncertainty

(mas)

Star x/y

Uncertainty

(mas)

Plate Scale
Uncertainty

(mas)

PA
Uncertainty

(�)
�RA
(mas)

�Dec
(mas)

Radial
Separation (mas)

Position Angle

(�)

2013 Nov 16 K1 0.6/0.7 0.7/0.7 0.3 0.13 -228.5 ± 1.3 -366.2 ± 1.1 431.6 ± 1.0 212.0 ± 0.2

2013 Nov 16 K2 0.5/0.4 0.7/0.7 0.3 0.13 -229.2 ± 1.2 -364.5 ± 1.0 430.6 ± 0.9 212.2 ± 0.2

2013 Nov 18 H 0.3/0.3 0.7/0.7 0.3 0.13 -229.1 ± 1.1 -364.7 ± 1.0 430.6 ± 0.8 212.1 ± 0.2

Table 2 continued
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Wang et al. (2016). Pic b Orbit 

Wang et al. Submitted. 
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Application to astrometry

Wang et al. (2016).Validation through Orbit Fitting 

Wang et al. Submitted. 
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Matched Filter Optimization

Solution: Forward Model Matched Filter (FMMF)

Problem: KLIP Self-Subtraction

• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, 
which is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be
used as the Matched Filter template.

• It is the 1st order term in the Taylor
expansion of the KLIP function𝒦 .

Goals:
• Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.
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Goals: • Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.

Context: The Gemini Planet Imager (GPI) is an adaptive optics instrument for direct imaging of
young self-luminous extrasolar planets. GPI is an integral field spectrograph therefore
obtaining simultaneous images and spectra. The High-contrast images are dominated by
speckle artifacts. Typical GPI datasets consist of 40 1-minute exposures on a target star. During
this period the rotation of the Earth causes the field of view to rotate by 15-30 degrees. The
speckles move with respect to the planet both in angle and wavelength, which allows us to
build and subtract a model of the speckles. The problem is that the subtraction also modifies
the planet point spread function. Here we explore enhancing detection using the Karhunen-
Loève Image Processing (KLIP) framework, applying forward modeling and matched filtering,
and develop a framework to compare this with conventional PSF subtraction.
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Goals: • Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.

Context: The Gemini Planet Imager (GPI) is an adaptive optics instrument for direct imaging of
young self-luminous extrasolar planets. GPI is an integral field spectrograph therefore
obtaining simultaneous images and spectra. The High-contrast images are dominated by
speckle artifacts. Typical GPI datasets consist of 40 1-minute exposures on a target star. During
this period the rotation of the Earth causes the field of view to rotate by 15-30 degrees. The
speckles move with respect to the planet both in angle and wavelength, which allows us to
build and subtract a model of the speckles. The problem is that the subtraction also modifies
the planet point spread function. Here we explore enhancing detection using the Karhunen-
Loève Image Processing (KLIP) framework, applying forward modeling and matched filtering,
and develop a framework to compare this with conventional PSF subtraction.
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indicates the cost of a true detection in term of
false positives. It is the right tool to compare
detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, which 
is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be used
as the Matched Filter template.

• It is the 1st order term in the Taylor expansion
of the KLIP function𝒦 .
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Goals: • Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.

Context: The Gemini Planet Imager (GPI) is an adaptive optics instrument for direct imaging of
young self-luminous extrasolar planets. GPI is an integral field spectrograph therefore
obtaining simultaneous images and spectra. The High-contrast images are dominated by
speckle artifacts. Typical GPI datasets consist of 40 1-minute exposures on a target star. During
this period the rotation of the Earth causes the field of view to rotate by 15-30 degrees. The
speckles move with respect to the planet both in angle and wavelength, which allows us to
build and subtract a model of the speckles. The problem is that the subtraction also modifies
the planet point spread function. Here we explore enhancing detection using the Karhunen-
Loève Image Processing (KLIP) framework, applying forward modeling and matched filtering,
and develop a framework to compare this with conventional PSF subtraction.
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• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term of
false positives. It is the right tool to compare
detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, which 
is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be used
as the Matched Filter template.

• It is the 1st order term in the Taylor expansion
of the KLIP function𝒦 .
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The Forward Model improves the throughput
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Goals: • Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.

Context: The Gemini Planet Imager (GPI) is an adaptive optics instrument for direct imaging of
young self-luminous extrasolar planets. GPI is an integral field spectrograph therefore
obtaining simultaneous images and spectra. The High-contrast images are dominated by
speckle artifacts. Typical GPI datasets consist of 40 1-minute exposures on a target star. During
this period the rotation of the Earth causes the field of view to rotate by 15-30 degrees. The
speckles move with respect to the planet both in angle and wavelength, which allows us to
build and subtract a model of the speckles. The problem is that the subtraction also modifies
the planet point spread function. Here we explore enhancing detection using the Karhunen-
Loève Image Processing (KLIP) framework, applying forward modeling and matched filtering,
and develop a framework to compare this with conventional PSF subtraction.
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• The movement measures the
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speckles and it is used to exclude
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removal but more self-subtraction.

1’’



The data Classical PCA Forward Modeling Conclusion

Application to planet detection

Ruffio et al., in prep.

The Forward Model Captures PSF Biases
𝑃𝑘 𝒦(𝐼𝑘) Δ𝑃𝒦 (𝑁𝑘)

Noise (N) Template (T) Observation (Y) Matched-Filter

Cross-correlation

Template

Improving Exoplanet Sensitivity with Direct Imaging 
using KLIP Forward Modelling

Jean-Baptiste Ruffio, Bruce Macintosh, Jason J. Wang , Laurent Pueyo and the GPI Team
jruffio@stanford.edu

Acknowledgements: Work on this project has been supported by the National Science Foundation, grant number AST-1411868 and
by NASA's NEXSS program, grant number NNX15AD95G. The GPI project has been supported by Gemini Observatory, which is operated by
AURA, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (USA), the National Research Council
(Canada), CONICYT (Chile), the Australian Research Council (Australia), MCTI (Brazil) and MINCYT (Argentina).

References: [1] Cantalloube, F. et al. 2015, A&A 582, A89
[2] Soummer, R., Pueyo, L. , & Larkin, J. 2012, ApJ, 755, 2.
[3] Pueyo, L. 2016, ApJ, accepted.
[4] Marley et al. in prep.; Saumon et al. 2012

Matched Filter Optimization

Solution: Forward Model Matched Filter (FMMF)

Problem: KLIP Self-Subtraction

• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, 
which is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be
used as the Matched Filter template.

• It is the 1st order term in the Taylor
expansion of the KLIP function𝒦 .

Goals:
• Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.
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parameter yields better speckle
subtraction but more self-
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and is Open Source.
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Matched Filter Optimization

Solution: Forward Model Matched Filter (FMMF)

Problem: KLIP Self-Subtraction

• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, 
which is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be
used as the Matched Filter template.

• It is the 1st order term in the Taylor
expansion of the KLIP function𝒦 .

Goals:
• Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.
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The most likely location for a planet[1] is the maximum of 
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the observation. This is called a matched Filter.
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pixel used to exclude images
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• Decreasing the movement
parameter yields better speckle
subtraction but more self-
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to be made.
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Matched Filter Optimization

Solution: Forward Model Matched Filter (FMMF)

Problem: KLIP Self-Subtraction

• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

• Contrast curves from different metrics should 
be drawn at the same false positive rate, 
which is not necessarily 5𝜎.

• Already operational for the GPI Exoplanet Survey.
• Automatic selection of candidates to follow up.

• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be
used as the Matched Filter template.

• It is the 1st order term in the Taylor
expansion of the KLIP function𝒦 .

Goals:
• Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.
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Contrast curves and completeness

Macintosh et al. (2015)

Fig. 2. Combined 30-minute GPI image of Beta Pictoris. The spectral data has been

median-collapsed into a synthetic broadband 1.5–1.8 µm channel. The image has been PSF

subtracted using angular and spectral di↵erential techniques. Beta Pictoris b is detected at a

signal-to-noise of ⇠ 100
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Fig. 3. Contrast vs. angular separation at H (1.6 µm) for a PSF-subtracted 30-minute

GPI exposure. Contrast is shown for PSF subtraction based on either a flat spectrum similar

to a L dwarf or a methane-dominated spectrum (which allows more e↵ective multi-wavelength

PSF subtraction.) For comparison, a 45-minute 2.1 µm Keck sequence is also shown. (Other

high-contrast AO imaging setups such as Subaru HiCIAO, Gemini NICI, and VLT NACO have

similar performance to Keck.)

8 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

How are survey results presented

Pick the “right” contrast curve for
each star. Delta mag vs separation.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.

Sum over all stars in survey.
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Contrast curves and completeness

The Forward Model Captures PSF Biases
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Matched Filter Optimization

Solution: Forward Model Matched Filter (FMMF)

Problem: KLIP Self-Subtraction

• The Receiver Operating Characteristic (ROC)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.
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• Two spectra suffice to reduce any other.
• Movement ≈ 0.5 pixel maximizes SNR.
• FMMF improves SNR by 50% at 0.3′′.

Method: Matched Filter

• KLIP Forward Model[3] analytically accounts
for the self-subtraction term and can be
used as the Matched Filter template.

• It is the 1st order term in the Taylor
expansion of the KLIP function𝒦 .

Goals:
• Enhancing exoplanets detection for direct imaging surveys.
• Develop a framework to compare detection metrics.
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How are survey results presented

Pick the “right” contrast curve for
each star. Delta mag vs separation.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.

Sum over all stars in survey.
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Contrast curves and completeness

Wahhaj et al. (2013)

– 54 –

Fig. 2.— The contrast curves for all Campaign debris disk targets, categorized by H-band

magnitude of the primary. For separations less than ∼1.5′′, the CH4 filter contrasts are

usually better. For larger separations, the H-band contrasts are better. In the figure above,

beyond the dotted-line we show the H-band contrasts. When only one filter is available, the

star’s name in the legend is tagged with the filter name.

How are survey results presented

Pick the “right” contrast curve for
each star. Delta mag vs separation.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
Monte Carlo simulations to explore all
possible orbits.

Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.

Sum over all stars in survey.
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Other methods

Moving forward with data analysis

By and large most of the community is using “blind” Principal Component
Analysis to analyze high-contrast imaging data. This is an ancient method!
There is room to do better:

Use correlation between telemetry and images (Vogt et al., 2010).

Use the images (and maybe telemetry) a physical model of the complex
field at the telescope entrance (Ygouf et al., 2012).

Give up on the L2 norm (L1 norm?).

Use only positive modes and positive coefficients (Non Negative Matrix
Factorization).

“Track” the motion of the planet in the data (low rank sparse
decomposition, LLSG, Gomez et al., 2016).
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