Exoplanet High Contrast Imaging Technologies Ground

KISS Short Course:
The Hows and Whys of Exoplanet Imaging

Jared Males University of Arizona

Telescope Diameter (Bigger is Better)

- Diameter:
 - Collecting area goes as D^2 -> more photons
 - Spatial resolution goes as 1/D -> sharper images (closer planets)

 Rule of thumb: it is easier to build large telescopes on the ground than to build them in space

Ground Based Telescopes

Magellan Clay 6.5 m

Subaru 8 m

Gemini-S 8 m

VLT 8 m (4)

Keck 10 m (2)

LBT 8x22 m

Ground Based Telescopes

GMT 24.5 m TMT 30 m E-ELT 39 m

The future is under construction . . .

Turbulence

- There's a catch . . .
- Light must propagate through the Earth's atmosphere to reach a telescope on the ground.
- Temperature variations in the atmosphere cause index of refraction variations
- The characteristic scale of these variations, r0, is less than telescope diameter D (for large telescopes).
- Result: the wavefront reaching the telescope is no longer flat
 - This is why stars twinkle

Flat Wavefronts

Pupil Plane

Focal Plane

Turbulence Degraded Wavefronts

Pupil Plane

Focal Plane

Adaptive Optics

 AO systems measure and correct the OPD caused by turbulence

- Key components
 - Wavefront sensor
 - Deformable mirror
 - Real time control system
- Limited by:
 - Speed of components
 - Number of actuators (DOF)
 - Brightness of stars

Courtesy of Claire Max

Generic AO System

Gemini Planet Imager (GPI)

Generic AO System

Gemini Planet Imager (GPI)

Generic AO System

Gemini Planet Imager (GPI)

Generic AO System

Coronagraph

Low-Order WFS

Integral Field Spectrograph

Gemini Planet Imager (GPI)

ExAO Block Diagram

Ground Exoplanet Imagers Today

- MagAO
 - 6.5 m Magellan Clay, 0.5 um (VisAO) to 5 um (Clio)
- LBTI
 - 8x22 m LBT, 1-13 um imaging, IFS, nulling & Fizeau interferometry
- P1640
 - 5 m Palomar, 0.9-1.78 um IFS
- GPI
 - 8 m Gemini-S, 0.9-2.4 um IFS, polarimetry
- SPHERE
 - 8 m VLT, 0.5-2.32 um imaging, IFS, polarimetry
- SCExAO
 - 8 m Subaru, 0.5 2 um, many modes of observation

MagAO and **LBTI**

See Esposito+ (2011); Close+ (2012); Hinz+ (2013)

Steph Sallum (LBTI+NRM) and Kate Follette (MagAO+VisAO) [Sallum et al, *Nature*, 2015]

- Adaptive secondary mirrors
 - Minimum new optical surfaces, optimal for thermal-IR
 - 8x22 m Large Binocular Telescope, Mt. Graham, AZ
 - 6.5 m Magellan Clay Telescope, Las Campanas Obs., Chile

SPHERE

- Spectro-Polarimetric High-contrast Exoplanet Research
- At 8 m VLT (ESO)
- For more, see
 https://www.eso.org/sci/facilities/paranal/instruments/sphere/overview.html

GPI

Macintosh+, 2015

- Gemini Planet Imager (GPI) on Gemini South (Chile)
- See also Poyneer+ (2016), and http://planetimager.org/

Introducing MagAO-X

Images at H α (656 nm)

- A new Extreme-AO system for Magellan
- 2000 actuators, 3.6 kHz
- Goal: 1 λ/D coronagraphy in the visible (see Males+, SPIE, 2016)
- Status: recommended for funding by NSF-AST (MRI), in preliminary design phase.

Limits of Ground Based AO

- Technology keeps getting better
 - Fast, high order DMs are readily available
 - Low (near zero) noise, fast detectors are becoming ubiquitous
 - From visible (EMCCD) to IR (APD arrays)
 - With energy resolution (MKIDS)
- Fundamental limit: photon noise
 - Stars are only so bright
 - Limits number of actuators: can not correct all errors
 - Limits system speed: always behind the wind
 - Overall limit on image quality achievable from ground
- Key metric (for exoplanets): Contrast
 - Ratio of detectable planet brightness to star brightness

Discussing Contrast Limits

- Space and Ground people sometimes mean different things
- Typical usage:
 - Space: raw post-coronagraph & WFC contrast
 - No dependence on integration time, etc.
 - Ground: final contrast, after post-processing
 - Includes hours of integration, weeks/months/years of postprocessing work
- Result: space people tend to think that ground people are crazy

Ground Based Telescopes

GMT 24.5 m TMT 30 m E-ELT 39 m

- The Extremely Large Telescopes will change the game
 - Diameters of 25, 30, and 39 m dramatically improve IWA
- ELTs will image smaller planets than we can today
 - And spectroscopically characterize them
- ELTs should be able to probe the HZs of nearby M-dwarfs

Ground-based Contrast Limits

Assumptions:

I mag = 8 (WFS > 100 targets) H mag = 6 (Science)

Noiseless detector
1.3 I/D IWA coronagraph
30% system efficiency
40% bandwidth in both WFS and
science
Time lag = 1.5 WFS frames

Mauna Kea "median" atmosphere

Analysis for 30 m TMT by Olivier Guyon (See Guyon, 2005, 2012)

Ground-based Contrast Limits

Ground-based Contrast Limits

Bonavita et al. 2012

Courtesy of Markus Kasper

Exoplanet Imaging Regimes

High Contrast Imaging on the Ground

- We have built, and are building, large telescopes on the ground
 - Current generation, 5-10 m, with AO, studying exoplanets right now
 - Next generation, 25-39 m, probing the HZs of nearby stars in the next 10-15 years.
- Atmospheric turbulence is the big challenge on the ground
 - Adapative optics
- Post-AO ground exoplanet imagers are similar to space-based
 - Similar coronagraphy problem
 - Post-coronagraphic wavefront control
 - Post-processing
- Ground and Space are not really in competition
 - Different strengths, different weaknesses
 - Will study complimentary planet populations