Interstellar Optical Communications

Study for KISS Workshop (January 12, 2015)

Abhijit Biswas, Meera Srinivasan, Malcolm Wright, Sabino Piazzolla

OUTLINE

- Introduction
- Interstellar Mission Parameters
- Interstellar Point Design
- Link Budget
- Link Acquisition & tracking
- Laser Lifetime
- Summary
- BACKUP

Introduction

Optical communications can augment service to future space missions

- Enhanced telecommunications capacity for comparable resources
- Overcoming RF bandwidth allocation constraints
- Support high precision ranging
- Allow novel light science

• NASA funded space demonstrations are retiring key risks for laser communication (lasercom) service

- A few examples of recent and upcoming NASA demonstrations of lasercom
- International Space Agencies also funded lasercom demonstrations and are planning operational service

Introduction (cont)

- Deep-space demonstration, expected early next decade, will retire additional risks
 - Long round-trip light-times
 - Single photon-counting detector arrays on both ends of link
 - High peak-to-average power lasers
 - Extended operations at variety of link and atmospheric conditions
 - Reliability and lifetime of components/assemblies in space
- Current study a point-design based on <u>reasonable extrapolation</u> of technology
- Study approach addresses a point design
 - Downlink performance
 - Rough estimates of mass & power on spacecraft
 - Link and atmospheric conditions for ground-based receiver
 - Initial system trades
 - Link acquisition from space
 - Link acquisition on the ground
- Not addressed
 - Concept of operations
 - High precision ranging and other possible light science applications

Interstellar Optical Communications Interstellar Mission Parameters

• Fix range at 250 AU

• Use Voyager 1 & 2 link geometry to guide link conditions

Interstellar Optical Communications Interstellar Point Design

Select fiber laser transmitter

- Robust for high average and peak powers¹ ~ 100-150 W
- Average power ~ 100-150 W
- Peak powers < 150 kW
- Narrow linewidth
- Moderate pulse modulation 10's of kHz
- Good thermal management

• Select Ytterbium (Yb):doped fiber laser amplifier @ 1060 nm

- Best electrical-optical conversion efficiency ~ 25%
- Wide-gain bandwidth
- High average power > 100 W for 100 MHz line-widths
- Electrical power estimated at 400-600 W
- Larger area (1000 μ m²) fiber handles peak power
- Expected improvement in 10-20 years
- Can handle thermal damage of 150 kW
- Good beam quality
- Long lifetime components (Mhrs MTBF demonstrated on pump diodes)
- 2 dB/yr improvement in power over past
- Compatible with space-based LIDAR system development

Select 50 cm diameter space telescope aperture

- Experience with building telescopes exists
 - Mars Observer Laser Altimeter (MOLA) on Mars Global Surveyor (MGS)
 - HiRise on Mars Reconaissance Orbiter (MRO)
 - Mass estimate of light-weighted 50 cm optical transceiver scaled from 22 cm SiC telescope estimate is
 - 48-58 kg
 - For comparison Voyager SXA telecom mass 53 kg (reflector structure, coax and waveguide)

Ref: "High power pulsed fiber lasers for space based remote sensing", F.Di Teodoro, SPIE newsroom DIO 10.1117/d.1201310.005059, 2013

Mars Orbiter Laser Altimeter (MOLA)

HiRise

Interstellar Optical Communications Interstellar Downlink Point Design (cont)

Assume a 12 m ground collection telescope

- being studied under SCaN funding for deep-space service
- <u>Superconducting Nanowire Single-photon Photo-detector (SNSPD) arrays</u> 50 x 50 array of 20μm nanowires
 - 70% detection efficiency with 60 ns recovery time and 100 ps jitter
 - similar to what is being developed for Deep-space Optical Communication (DSOC) Project except that array size is larger

64-pixel SNSPD Array

*Hamid Hemmati, Abhijit Biswas and Ivan Djordevic, "Deep-Space Optical Communications: Future Perspectives and Applications," Proceedings of the IEEE, 99(11), 2020-2039, (2011).

Link Performance Summary

· Evaluated link performance for different day and nighttime conditions

- Range 250 AU
- Detailed link table in backup chart
- Assumed 5-dB link margin
- Constrained laser peak power to ~ 100 kW

Link Acquisition & Tracking Architecture

Option 1: Single 4 mrad focal plane for acquiring and tracking Sun from 250 AU

- Focal plane sizing becomes challenging
 - To first order array size of +/- 4 mrad required to find Earth
 - Studied 128 x 128 photon-counting array with 39 μ rad instantaneous field-of-view (IFOV)
 - High solar photon-flux (VISIBLE band) theoretically allows achieving sufficiently low noise equivalent angle
 - Approach relies on "offset-pointing" and the accuracy of estimating Earth position relative to the Sun

Option 2: Use separate focal planes for imaging Sun and Earth (4 mrad and 0.4 mrad)

- Have additional thermal IR array for finding Earth
- Thermal IR 8-10µm array for detecting Earth based on knowing Sun position
- IR FOV needed +/- 250 µrad to accommodate point-ahead angles
- Pixel size of 2-μrad to achieve downlink pointing NEA (250 x 250 pixels)
- Tracking on IR-point source (Earth) more reliable than offset pointing?
- Need stray light study to ensure that Sun stray light + thermal emission noise is tolerable

4-mrad

Interstellar Optical Communications Link Acquisition Tracking & Pointing from 250 AU

• Two-stage concept for using Sun and Earth as references

- Initial use of Sun as a beacon on wide field-of-view detector array (±4 mrad)
 - Plenty of photons available to establish reference position knowledge: ~4x10⁻⁴ µrad centroid error
- Handoff to long-wave infrared (8-9 μm) focal plane detector array to sense Earth thermal image for reliable pointing
 - Narrow IR field-of-view to 400 µrad (accommodates downlink point-ahead angle, Sun out of view)
 - Earth thermal image appears as point source on focal plane; assume sufficient pixels and/or optics so Earth image ~ 1
 pixel diameter
 - Sufficient photons in 8-9 µm band for centroiding
 - Dominant source of centroiding error is internal thermal irradiance (requires further investigation to quantify)

- Downlink pointing error < 0.8 µrad to achieve < 0.5 dB pointing loss
 - Reference centroiding NEA < 0.17 µrad

Interstellar Optical Communications Ground Acquisition & Tracking

- Downlink acquisition relies upon detection of periodically inserted pilot synchronization symbols into PPM data stream
 Embedded pilot symbols
 - Assume 5% synchronization overhead
 - Accumulate slot statistics over integration tim

- At 250 AU daytime conditions, acquisition dwell time is 100 ms for 10⁻⁶ probability of missed detection
- May be achieved with 100 parts per billion downlink clock stability

Summary

- Completed initial evaluation of inter-stellar optical communications from 250 AU
- 100 W transmitter with a 50 cm aperture in space
- 12 m ground receiving aperture
 - Data-rates of 10-100 kb/s under nominal day and night conditions
 - Initial estimate of mass and power are 110 Kg and 530 W (see backup for breakdown)
 - Acquisition and tracking use Sun in Visible spectral band and Earth image in thermal IR band
 - Acquisition and tracking on ground with pilot tone (5% overhead)
- Future study topics
 - Laser lifetime (Needs study and technology development to start soon if needed in 20+ years)
 - Detector array expansion both flight and ground (flight detectors need near-term/immediate attention)
 - Concept of operations, especially how the optical terminal will operate over the diverse ranges on its way to 250 AU
 - How is the terminal operated in early mission phases
 - How ephemeris needed for pointing will be obtained
 - Long light times of days can result in weather changes by the time the signal reaches Earth
 - Need to have a re-transmission scheme of some sort
 - No uplink was considered, optical uplink from space-borne platforms are an option worth exploring
 - Possibility of ranging and other light science

THANK YOU Joe Lazio, Leon Alkali

BACKUP

Interstellar Optical Communications Laser Reliability and Lifetime Considerations

Issues for reliability

- Peak power limited (~4 MW for 0.05 100 ns) pulses by:
 - Thermal effects on optical coatings
 - Self-focusing in fibers
 - Optical damage limits of glass fibers larger cores possible
 - Nonlinear effects in fiber
- Thermal management of high pump powers
- Pulse energy limited by:
 - Energy storage of metastable states due to amplified spontaneous emission (ASE)
 - Onset of nonlinear processes stimulated Rayleigh scattering (SRS), Brillouin scattering (SBS)

Mitigation techniques to address lifetime reliability and power handling

- Operate at most efficient wavelength around 1 µm to minimize thermal loading
- Optimize material better processing, polishing, impurities, use end caps
- Need controllable pulse parameters adaptive pulse shape control, PRFs above reciprocal of upper state lifetime due to stored energy depletion effects
- Improved fiber nonlinearity management
 - Mode area scaling air-clad (photonic crystal fibers PCF), large mode area fibers for reduced NA to give good beam quality with larger core diameters
 - Reduce Kerr nonlinearities with hollow core fiber, multiple apertures
- Minimize fiber strain lower pump absorption, longer length fibers
- Increase laser linewidth through phase modulation, seed pulsing to increase SRS threshold
- Radiation tolerant fiber designs becoming available

Robust fiber based laser transmitters can be developed to support interstellar optical links with current technology

- Comparison of Earth and Sun Irradiance at 1 AU
 - Earth Diameter 12740 Km
 - Sun Diameter 1391684 Km
- Wavelength range 1-13 micron
- Earth: data from MODTRAN, one can assume a 3dB of variation
 - Sun Zenith Angle 52 Degreeq

Initial estimate of mass and power

	Mass	Power
Telescope	58	5
Laser	25	500
Electronics	15	20
Cables	5	
Thermal	7	5
TOTAL	110	530