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Introduction 
• Optical communications can augment service to future space missions 

 Enhanced telecommunications capacity for comparable resources 

 Overcoming RF bandwidth allocation constraints 

 Support high precision ranging  

 Allow novel light science  

• NASA funded space demonstrations are retiring key risks for laser communication (lasercom) service 
 A few examples of recent and upcoming NASA demonstrations of lasercom 

 International Space Agencies also funded lasercom demonstrations and are planning operational service 
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Introduction (cont) 

• Deep-space demonstration, expected early next decade, will retire additional 

risks 
 Long round-trip light-times 

 Single photon-counting detector arrays on both ends of link 

 High peak-to-average power lasers 

 Extended operations at variety of link and atmospheric conditions 

 Reliability and lifetime of components/assemblies in space 
 

• Current study - a point-design based on reasonable extrapolation of technology 
 

• Study approach addresses a point design 

 Downlink performance  

 Rough estimates of mass & power on spacecraft 

 Link and atmospheric conditions for ground-based receiver 

 Initial system trades 

 Link acquisition from space 

 Link acquisition on the ground 

 

• Not addressed 

 Concept of operations 

 High precision ranging and other possible light science applications 
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Interstellar Mission Parameters 
• Fix range at 250 AU 

• Use Voyager 1 & 2 link geometry to guide link conditions 
 Minimum Sun-Earth-Probe angle ~ 35 

 SPE angle < 1 
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• Select fiber laser transmitter  
 Robust for high average and peak powers1  ~ 100-150 W 

 Average power ~ 100-150 W 

 Peak powers < 150 kW 

 Narrow linewidth 

 Moderate pulse modulation 10’s of kHz 

 Good thermal management 

•  Select Ytterbium (Yb):doped fiber laser amplifier @ 1060 nm  
 Best electrical-optical conversion efficiency ~ 25% 

 Wide-gain bandwidth 

 High average power > 100 W for 100 MHz line-widths 

 Electrical power estimated at 400-600 W 

 Larger area (1000 m2) fiber handles peak power  

 Expected improvement in 10-20 years 

 Can handle thermal damage of 150 kW 

 Good beam quality 

 Long lifetime components (Mhrs MTBF demonstrated on pump diodes) 

 2 dB/yr improvement in power over past  

 Compatible with space-based LIDAR system development 

• Select 50 cm diameter space telescope aperture 
 Experience with building telescopes exists  

 Mars Observer Laser Altimeter (MOLA) on Mars Global Surveyor (MGS)   

 HiRise on Mars Reconaissance Orbiter (MRO) 

 Mass estimate of light-weighted 50 cm optical transceiver scaled from 

22 cm SiC telescope estimate is  

 48-58 kg  

 For comparison Voyager SXA telecom mass 53 kg (reflector  

structure, coax and waveguide) 

1.  D. J. Richardson, J. Nilsson and W. A. Clarkson, “High Power Fiber Lasers: current status and future perspectives,” J. Opt. Soc. Am. B, Vol. 27, No. 11, Nov. 2010, B63-B92.  

Interstellar Point Design  

Mars Orbiter 

Laser Altimeter 

(MOLA) HiRise  

Ref: “High power pulsed fiber lasers for space based remote sensing”, 
F.Di Teodoro, SPIE  newsroom DIO 10.1117/ d.1201310.005059, 2013 
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• Assume a 12 m ground collection telescope  
 being studied under SCaN funding for deep-space service 

• Superconducting Nanowire Single-photon Photo-detector (SNSPD) arrays 

50 x 50 array of 20m nanowires 
 70% detection efficiency with 60 ns recovery time and 100 ps jitter  

 similar to what is being developed for Deep-space Optical Communication (DSOC) Project except that array 

size is larger  

Interstellar Downlink Point Design (cont) 

Artists Concept 

Of 12m Ground telescope* 

64-pixel SNSPD Array 

Cryostat 
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Link Performance Summary 

• Evaluated link performance for different day and nighttime conditions 
 Range 250 AU 

 Detailed link table in backup chart 

 Assumed 5-dB link margin 

 Constrained laser peak power to  ~ 100 kW 

0.01

0.1

1

10

100

1000

100W Transmitter

50W Transmitter

D
at

a-
R

at
e 

(k
b

/s
) 

Avg. 

Transmitter 

Power          

100 W 

Avg. 

Transmitter 

Power               

50 W

SEP (deg) r0 @ 500 

nm @ 

zenith     

(cm) 

Night Nom 107 42 140 5

Night Worst 56 21 140 3

Day-Nom A 19.3 5.6 85 5

Day-Worst A 4.7 1.3 85 3
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VIS Focal Plane 

Sun Angular Dia. 

37 rad 

Option 1: Single 4 mrad focal plane for acquiring and tracking Sun from 250 AU 

 Focal plane sizing becomes challenging  
 To first order array size of +/- 4 mrad required to find Earth 

 Studied 128 x 128 photon-counting array with 39 rad instantaneous field-of-view (IFOV)  

 High solar photon-flux (VISIBLE band) theoretically allows achieving sufficiently low noise equivalent angle   

 Approach relies on “offset-pointing” and the accuracy of estimating Earth position relative to the Sun 

Option 2: Use separate focal planes for imaging Sun and Earth (4 mrad and 0.4 mrad)  
 Have additional thermal IR array for finding Earth 

 Thermal IR 8-10m array for detecting Earth based on knowing Sun position 

 IR FOV needed +/- 250 rad to accommodate point-ahead angles 

 Pixel size of 2-rad to achieve downlink pointing NEA (250 x 250 pixels)  

 Tracking on IR-point source (Earth) more reliable than offset pointing? 

 Need stray light study to ensure that Sun stray light + thermal emission noise is tolerable  

 

Link Acquisition & Tracking Architecture 

4-mrad 

IR-Focal Plane 

Earth Point 

source 
Steering 

Mirror 

400-rad 
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Link Acquisition Tracking & Pointing from 250 AU 

• Two-stage concept for using Sun and Earth as references 
– Initial use of Sun as a beacon on wide field-of-view detector array (±4 mrad) 

 Plenty of photons available to establish reference position knowledge:  ~4x10-4 μrad centroid error 

– Handoff to long-wave infrared (8-9 μm) focal plane detector array to sense Earth thermal image for 

reliable pointing  
• Narrow IR field-of-view to  400 μrad (accommodates downlink point-ahead angle, Sun out of view) 

• Earth thermal image appears as point source on focal plane; assume sufficient pixels and/or optics so Earth image ~ 1 

pixel diameter 

• Sufficient photons in 8-9 μm band for centroiding 

• Dominant source of centroiding error is internal thermal irradiance (requires further investigation to quantify) 

 

 

 
  

 
 
 
 
 
 
 
 
 

 
– Downlink pointing error < 0.8 μrad  to achieve < 0.5 dB pointing loss 

 Reference centroiding NEA < 0.17 μrad  
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Ground Acquisition & Tracking 

• Downlink acquisition relies upon detection of periodically inserted pilot synchronization 

symbols into PPM data stream 

• Assume 5% synchronization overhead 

• Accumulate slot statistics over integration time 

 

 

 

 

 

• At 250 AU daytime conditions, acquisition dwell time is 100 ms for 10-6 probability of missed 

detection 

• May be achieved with 100 parts per billion downlink clock stability 

 

 

Dwell time per search cell (sec) 

P
ro

b
ai

b
lit

y 
o

f 
m

is
se

d
 d

e
te

ct
io

n
 

• 25 ns pulse width 
• 5% pilot overhead 
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Summary 

• Completed initial evaluation of inter-stellar optical communications from 250 AU  

• 100 W transmitter with a 50 cm aperture  in space  

• 12 m ground receiving aperture 

 Data-rates of  10-100 kb/s under nominal day and night conditions 

 Initial estimate of mass and power are 110 Kg and  530 W (see backup for breakdown) 

 Acquisition and tracking use Sun in Visible spectral band  and Earth image in thermal IR band 

 Acquisition and tracking on ground with pilot tone (5% overhead)  

• Future study topics  

 Laser lifetime (Needs study and technology development to start soon if needed in 20+ years)  

 Detector array expansion both flight and ground (flight detectors need near-term/immediate attention) 

 Concept of operations, especially how the optical terminal will operate over the diverse ranges on its 

way to 250 AU 

 How is the terminal operated in early mission phases  

 How ephemeris needed for pointing will be obtained 

 Long light times of days can result in weather changes by the time the signal reaches Earth 

 Need to have a re-transmission scheme of some sort 

 No uplink was considered, optical uplink from space-borne platforms are an option worth exploring 

 Possibility of ranging and other light science 
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Laser Reliability and Lifetime Considerations 
• Issues for reliability  

 Peak power limited ( ~ 4 MW for 0.05 – 100 ns) pulses by:  

 Thermal effects on optical coatings 

 Self-focusing in fibers 

 Optical damage limits of glass fibers – larger cores possible 

 Nonlinear effects in fiber 

 Thermal management of high pump powers 

 Pulse energy limited by: 

 Energy storage of metastable states due to amplified spontaneous emission (ASE) 

 Onset of nonlinear processes – stimulated Rayleigh scattering (SRS), Brillouin scattering 

(SBS) 

• Mitigation techniques to address lifetime reliability and power handling 
 Operate at most efficient wavelength around 1 µm to minimize thermal loading 

 Optimize material  - better processing, polishing, impurities, use end caps 

 Need controllable pulse parameters – adaptive pulse shape control, PRFs above reciprocal 

of upper state lifetime due to stored energy depletion effects 

 Improved  fiber nonlinearity management 

 Mode area scaling – air-clad (photonic crystal fibers – PCF), large mode area fibers for 

reduced NA to give good beam quality with larger core diameters 

 Reduce Kerr nonlinearities with hollow core fiber, multiple apertures 

 Minimize fiber strain – lower pump absorption, longer length fibers 

 Increase laser linewidth through phase modulation, seed pulsing to increase SRS threshold 

 Radiation tolerant fiber designs becoming available 

Robust fiber based laser transmitters can be developed to support interstellar 
optical links with current technology 
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• Comparison of Earth and Sun Irradiance at 1 AU 

– Earth Diameter 12740 Km 

– Sun Diameter 1391684 Km  

• Wavelength range 1-13 micron 

• Earth: data from MODTRAN, one can assume a 3dB of variation 

– Sun Zenith Angle 52 Degreeq 
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Mass Power

Telescope 58 5

Laser 25 500

Electronics 15 20

Cables 5

Thermal 7 5

TOTAL 110 530

Initial estimate of mass and power 
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