Laser Propulsion Demo Consideration

Ad-hoe-working group: M. Arya, J.Cantrell, L. Friedman, D. Garber, L. Johnson, P. Lubin, E. Montgomery, J. Puig-Suari, Tom Svitek

Presentation to KISS Exploring the Interstellar Medium Workshop 14 January 2014

Rationale

- Beamed energy propulsion is the only known technology leading to the stars
- Should provide some boost to ISM mission
- Supports concept of interstellar precursors
 - Technology advancement
 - Roadmap
- Can begin with small scale, low cost demo

 Potential for private funding

Laser System Technology Demonstrations

- Smallsat Demo in Earth Orbit A First Space-Based Laser Propulsion
 - Measure Acceleration
 - Implement gang of laser diodes with sufficient power
 - Advance New component technologies
- Ground Based beamed energy propulsion on a sail
 - Large Aperture Beam gossamer director
 - Direct conversion technologies in simulator chambers
 - High Power or phased array thrust measurement
 - 3-6U CubeSat with Sail to be illuminated
- Adjunct to interstellar NEA Scout (or another)
 - Smallsat Burst Laser to chase and engage
 - Send cubesat Fresnel lens to concentrate (Beam) sunlight on to sail from close proximity

Building a Roadmap: The Dichotomy

- Beamed Energy is the Only Known Interstellar Propulsion Technology – Defines the Destination
- Small first-ever Laser Sail Demo is possible and likely affordable – Defines the Start
- The middle is muddled

For the ISM Mission Physics is Good but the Math is Bad

• Solar Sail to perihelion

- ~0.1AU and A/m~200 m²/kg ~=> v_{esc} ~ 13 AU/year

- ~0.1AU and A/m~500 m²/kg => v_{esc} > 18 AU/year

TeamX solid rocket sun-grazing Δv mission

 $- => v_{esc}$ ~13 AU/year

• REP with min Hall thrusters estimate extra $\Delta v \sim 6 km/s/year$

- => perhaps 30 km/s ~6 AU/y

CONCLUSION: For laser sail technology to be of ISM mission value we need boost ~10 to 30 km/s = 2-6 AU/year

How to Achieve Δv^{210} to 30 km/s

Parametric Analyses by Phil Lubin

Speed vs Laser Power and Spacecraft Mass **Speed vs Laser Power and Spacecraft Mass** Optimized for Spacecraft Mass = Sail Mass Optimized for Spacecraft Mass = Sail Mass Optics Size = 0.1m - Sail thickness = 1μ Optics Size = 100m - Sail thickness = 1μ Mass is bare spacecraft mass Mass is bare spacecraft mass 10⁵ 10⁶ 0.001 kg 0.001 kg 0.01 kg 0.01 kg 10⁴ 10⁵ 0.1kg 0.1kg kg 1 kg 10³ 10 kg 10 kg 10⁴ Speed (m/s) Speed (m/s) 10² 10³ 10¹ 10² 10⁰ 10¹ 10⁻¹ 10⁻² 10° 10^{6} 10^{3} 10⁸ 10° 10^{2} 10⁶ 10° 10^{2} 10⁷ 10^{9} 10^{3} 10⁴ 10⁷ 10^{8} 10 10¹ 10^{9} Power (w) Power (w)

Conclusions

- The interstellar goal requires laser sailing technology demonstration and development
- Benefits of laser sailing for interstellar precursors require larger scale systems beyond the current planning horizon
- A small motivating demonstration should be considered, beginning with a preliminary design to define requirements
- Synergy with other technology of laser communication, power and defense applications will be of interest
- KISS study follow-on requirements study recommended to include ground and space based tests