Ultralight photovoltaic power and fuel tanks

Harry Atwater Caltech

- Ultralight modular integrated photovoltaics mass and size
 - Module level description
 - Ultralight photovoltaic specific power on Mars
- Fuel and tank mass and size

Large Scale Space Solar Power: Specific Power

SPS	USEF	JAXA	ESA	Alpha	Caltech
W/kg	41	98	132	33	2000-6000
Max size for	100 m x 95 m	3.5 km	15 km	6 km	60 m x 60
deployment					m

Current State of Art

Off-the-shelf PV and power components

Watts on ground/kg in space

Ultralight Approach

 Innovate to develop science and technology for a lightweight, highperformance modular system; assume current launch costs

Module Design Summary

60 m x 60 m square architecture. Designed for tile rotation <1° under SRP.

Mass (kg)	369
Tiles (@80 g/m ²)	288
Strip structure	19
Hub	50
Booms	12

Booms:

4 × coilable CFRP trusses 42 m long, ~1.5 kg each, ATK

> Min. bend radius 14 mm

Strips:

1.5 m wide

20 per quadrant

CFRP TRAC longerons (2 x 64 µm thick tape springs, max stowed strain < 0.5%)

Stowed module:

1.5 m height

0.926 m diameter

Module Power on Mars

Space: 4.7 MW at AM0 (1330 W/m2)

Daily average on Mars, no dust: = 529 kW (147 W/m2, from Dave)

Daily average on Mars, dust storm: 118 kW = (33 W/m2, from Dave)

Module weight = 370 kg

Specific power on Mars:

529/370 = 1.4 kW/kg (no dust)

118/370 = 318 W/kg

Weight of fuel tanks

- Data derived from rocket motor tank specs
- Tank wall thickness:
 - Falcon 9 Heavy: 4.7mm (reusability)
 - Space Shuttle external tank and Atlas rocket ('old school'): 2.5 to 10 mm
 - Centaur upper stage: 0.36 to 0.41 mm
 - Saturn V first stage: 4.32 to 6.45 mm
- Tank volume and size:
 - Saturn V:
 - 43 m tall and 10 m diameter
 - 770,000 liters of kerosene and 1.2 million liters of liquid oxygen
- Tank and fuel weight (Saturn V):
 - $(314 \text{ m2} \times 0.003 \text{ m} = 0.94 \text{ m3}) \times 2830 \text{ kg/m3} = 2600 \text{ kg} 2.6 \text{ metric tons}$
 - 770,000 liters of kerosene and 1.2 million liters of liquid oxygen: Assume
 it's all oxygen (1.97 million liters of liquid oxygen)x(1.14 kg/l) = 2.25
 million kg = 2,250 metric tons of liquid oxygen

