

Reference technology (Mostly MOXIE)

Long Term Mission Sequence

Benefits of ISRU propellant

ELEMENT	DRM-1 (mT)	DRM-3 (mT)	COMMENT
Ascent capsule	4	6	Includes crew of 6
Ascent propulsion stage	3	5	Typically 15% of propellant requirement
Propellant (CH4 + O2)	26	39	
Mass saved in LEO if ISRU produces CH4 + O2	300 -500	440-800	Depends on assumptions re: aerocapture/propulsion
Mass saved in LEO if ISRU produces only O2	230-380	330-620	Depends on assumptions re: aerocapture/propulsion

Robotic ISRU: Make vs "buy"

- * Assumptions:
 - ★ >25 kW power source
 - >12 months to produce propellant
- * $CO_2 \rightarrow O_2$
 - * Mass: ~1 mT for system saves ~25 mT transported
 - * Constraints imposed on mission: None
- ★ $H_2O + CO_2 \rightarrow CH_4$ (additional)
 - * Mass: ~0.7 mT for system saves ~7 mT transported
 - * Constraints imposed on mission:
 - * Landing where water is available
 - * Robotic prospecting, excavation, testing

	Propell	ant-rela	ted S	S/C Mas	s (mT)		Figures of	f merit (n:1)	Other considerations			
Scenario	ISRU h/w	02	CH4	Total	Mass Savings	Propellant Produced (mT)	Mass savings: ISRU h/w mass	Production: ISRU- related s/c mass	Requires excavation ?	Constrains landing site?	Flight-like prototype?	
No ISRU	0	24.6	7	31.6		0				S. Mar		
LOx only	1	0	7	8	24	24.6	24	3	No	No	Yes	
LOx + CH4	1.7	0	0	1.7	30	31.6	18	19	Yes	Yes	No	

Source: M-WIP study

Mars 2020 Rover

Mars Oxygen **ISRU** Experiment

Sensor Panel

- ~1:200 scale production •
- ~1:400 scale operating time •
- No product storage •
- No fuel production ullet

Scroll pump

Mars 2020 Project

• Alternatives: Cryogenic, sorption bed

Day in the Life

Where does the power go?

*	SOXE current:	60W
*	Pump:	110W
*	Stack heaters (mostly make-up heat):	72W
*	Sensors, incl. panel heating:	9W
*	Electronics, mostly DC/DC conversion:	67W

Total

320W

2024 ISRU Validation w/ MSR option

	 Concept: Leveraging MOXIE, a 2024 validation mission to: Demonstrate end-to-end resource utilization and validation Launch a 6U CubeSat MAV payload with sample receptacle from Mars to elliptical orbit Offer option for delivery of Mars 2020 sample 	 Description Precision Landing of >> 1 mT, possibly SRP 1 kW power system (nuclear or solar) ISRU O₂ generation (>5x break-even) Mars Ascent Vehicle (MAV) Cryogenic O₂ storage and transfer to MAV Sample transfer to MAV MAV ascent to (elliptical) orbit Cubesat w/ station-keeping in Mars orbit Possible MAV propulsion (solar or SEP) to raise MAV orbit or return to Earth
Rough numbers: ISRU System mass ISRU Power O_2 production rate Time to generate O_2 MAV dry mass MAV payload mass CH_4 mass ISRU O_2 mass	21 kg 1067 W 50 g/hr 89 sols 24 kg 12 kg 31 kg 109 kg (5.2x system mass)	Notional Mission Timeline: March, 2021: Mars 2020 arrives at Mars July 2024: End Mars 2020 primary mission ISRU Mission Launches March 2025: ISRU Mission Lands June 2025: Complete ISRU MAV Fueling [Optional] Mars 2020 sample transfer MAV Launch December 2026: End ISRU Primary Mission

What limits O₂ production?

- 1. Inlet flow
 - * Together with CO₂ utilization fraction, determines O₂ production
 - * Limited by overall pump capability
 - * Limited by inlet gas density, which is determined by:
 - * Ambient pressure & temperature
 - * Pressure drop across filter, including dust
- 2. Available power
 - * Safe current limit of 4A
 - * Power limit of 35W per supply (not normally a constraint)
 - * Circuit limit of 10A (not normally a constraint)
 - * Thermal constraints at high power (depends on many factors)
- 3. SOXE capability
 - * All the electrochemistry is captured in one empirical number, ASR, and a more-or-less constant number, OCV
 - * Scale by area (22.7 cm² and number of cells (5x2=10)
 - * Limited by safe operating voltage and % CO₂ utilization, largely TBD

How do these factors rank in importance?

SOXE Challenges

- * Challenges & approaches
 - * Dry CO₂ electrolysis
 - Custom materials
 - Heat/cool cycling
 - * Controlled startup/shutdown; CTE matching
 - * Cold-side compression to minimize pre-heat energy
 - * Oxidation
 - * CO recirculation
 - * Coking
 - Limit on operating voltage
 - * Low pressure environment
 - * Hermetic (glass) sealing to formed interconnect
 - * Compression fixture
 - * Shock & vibration
 - * Isolation mounting if needed
- Under development by Ceramatec, Inc. (a division of CoorsTek)

V_{op} Limited by CO Reduction Potential

14

SOXE Summary

- * Results & Findings:
 - * Low ASRs (2-2.5)
 - * Stable to heat/cool cycling
 - * Oxidation is a bigger challenge than coking
 - * SOXE capability exceeds MOXIE resources on Mars
- * Still to be studied:
 - * Limits on CO2 utilization, voltage, temperature
 - * Long-term performance (>1000 hrs)

Viking Pressure Data

Atmospheric Pressure at the Surface of Mars (all years)

SOXE Performance v. ASR

18

Filter sensitivity to dust

- MOXIE will ingest ~50 mg dust through a 264 cm² pleated filter, or ~2 g/m².
- Incident velocity v₀ typically ~5 cm/s, comparable to Thomas study (right), but particles are typically larger.
- Begin to get in trouble between 1-10 g/m²
- Full-scale MOXIE will ingest ~5 kg dust over 1 year
- Dust storms result in up to x10 deposition.

 v_0 =5 cm/s, d_p =0.15 µm. From D. Thomas et al. (1999) *J. Aero. Sci.*, 30 (2), 235-246.

Dust conclusions

- ★ → Filters need to have huge surface area if they are not to obstruct flow, and are degraded by a few microns of dust
- * The way forward?
 - * Filter-less first-stage pumping?
 - * Cyclone or electrostatic mitigation?

Take-aways

- * MOXIE production rate is determined by a number of factors, including:
 - * SOXE capability
 - * Pump capability
 - * Power supply capability
 - * Safe operating conditions (TBD)
 - * Landing site & weather
 - * Filtering and dust
- It is not currently expected that overall O₂ production will be limited by SOXE performance. This is probably typical of reference systems.

Special thanks to the amazing JPL Project Team!

MOXIE Testbed

M. Hecht, MIT/HO (PI) J. Hoffman, *MIT (DPI)* G. Sanders, *ISC* D. Rapp, Consultant B. Yildiz, *MIT* G. Voecks, JPL K. Lackner, ASU J. Hartvigsen, *Ceramatec* P. Smith, Space Expl. Instr. W. T. Pike, Imperial Coll. M. Madsen, U. Copen. C. Graves, DTU (Coll.) M. de la Torre Juarez, JPL (Coll.) Mars 2020 Rover SuperCam Mast Unit

Jet Propulsion Laboratory ^{California Institute of Technology} J. Mellstrom , Project Manager

The Mars Oxygen ISRU Experiment On NASA's Mars 2020 Rover

- A joint project of NASA's:
- HEOMD
- STMD
- SMD

More MOXIE

Backup slides

Anatomy of MOXIE

Mars 2020 Project

MOXIE Functional Block Diagram

Mars 2020 Project

Uncertainties in production rate

- * MOXIE production rate is a balance of:
 - * SOXE capability
 - * Pump capability
 - Power supply capability
 - * Safe operating conditions (TBD)
 - * Landing site (TBD)
 - * Season and time of day

Landing site characteristics

- * Potential landing site elevations and pressure
 - * **Planet average:** ~4.6 Torr, but not really relevant (see below)
 - * **Elevation:** Varies over *many* kilometers, dominated by hemispheric dichotomy. *Corresponding surface pressure varies by more than x2*.
- * Likely landing sites
 - * **Prior to M2020:** Lowlands favored for EDL. MSL, Viking < -3.6 km.
 - * M2020: Sites considered between -2.6 and -0.6 km
 - *** Human landing:** For EDL reasons, almost certain to be < -3.5 km.
- * Types of pressure variation the rover will experience:
 - *** Seasonal:** Up to 30% due to polar deposition of CO₂ (predictable)
 - * **Diurnal:** 5-12% depending on topography (predictable)
 - Weather: A few % typically, up to 12% increase in global dust storms
 - * Local topography: Several %, but below resolution of GCM

Global Climate Model predicts

_	A	B	С	D	E	K	L	М	N	0	R	S
1					MOLA		GCM (F	orget et al) [2]		VL1-based [3]	
2			Lat	Long	Elevation	Ls 150		Ls 260		Max*	Low	High
3	#		(deg N)	deg (E)	(m)	Low (T)	High (T)	Low (T)	High (T)	(Torr)	(Torr)	(Torr)
4	7	Nili Fossae	21.097	74.3494	-655	3.89	4.12	4.84	5.18	5.72	3.76	5.63
5		E. Margaritifer [b]	-5.596	353.835	-1249	3.98	4.27	4.87	5.33	5.78		
6	2	Eberswalde [a]	-23.7749	-33.5147	-1400	4.19	4.57	4.85	5.32	5.74	4.04	6.06
7		Nili Carbonate [b]	21.7	78.9	-1458	4.19	4.29	5.32	5.51	6.14		
8	8	SW Melas	-9.8132	-76.4679	-1886	4.19	4.61	5.02	5.57	6.17	4.23	6.34
9	1	Columbia Hills [a]	-14.5478	175.6255	-1900	4.22	4.62	5.17	5.79	6.22	4.23	6.34
10	6	NE Syrtis	17.8889	77.1599	-2035	4.36	4.52	5.57	5.82	6.53	4.27	6.40
11	3	Holden Crater	-26.62	-34.8713	-2129	4.42	4.89	5.03	5.57	5.99	4.30	6.46
12	5	Mawrth Valles	23.9685	-19.0609	-2247	4.45	4.58	5.67	5.93	6.50	4.38	6.58
13	9	Hypanis Valles [a,c]	11.8	314.6	-2600	4.59	4.81	5.84	6.22	6.92		
14	4	Jezero Crater	18.4386	77.5031	-2620	4.57	4.76	5.85	6.14	6.90	4.50	6.76
15		VL-1 [1]	22.48	-49.79	-3627	4.82	4.98	6.17	6.54	7.30		
16		MSL (Landing)**	-4.59	137.44	-4400	5.22	5.70	6.50	7.28	8.00		
17		VL-2 [1]	47.97	-225.47	-4505	5.49	5.58	7.41	7.61	8.28		
18	10	McLaughlin Crater [c]	21.818	337.749	-5028	5.60	5.86	7.32	7.76	8.45		
19												
20	Note	S										
21	*	"Dust Storm Max Solar" m	ode.									
22	**	Now at -4292										
23	[a]	Added at 2nd workshop										
24	[b]	Eliminated after 2nd work	shop									
25	[c]	Under consideration for so										
26												
27	[1]	Smith, D.E. et al, J. Geophy										
28	[2]	http://www-mars.lmd.juss	node									
29	[3]	From Mike Mischna										

Considerations in eventual design

- * Where do we land? Weigh *perceived* science value against:
 - * Ready availability of water ice (i.e. high latitude)
 - * Safety/ease of landing (low elevation, maybe low latitude)
 - * Surface traverse capability
- * Assuming low latitude (no ice)... what limits performance? What infrastructure is available?
 - ★ Human base will likely need nuclear reactor → plentiful power during ISRU stage
 - ★ Oxygen storage will likely need cryogenics → may as well use it for other systems, e.g.
 - * Parallel, out-of-phase cryogenic CO₂ acquisition instead of pump.
 - * Separation of Ar, N_2 for buffer gases in habitat.
 - * Further purification of breathable O_2 .
- * Assuming high latitude, ready ice availability...
 - * Do we want to do CO_2 ISRU at all?

Pump constraints

- ***** Things we can estimate:
 - * *Reference performance:* **79** g/hr for inlet gas P=7.6 Torr, T= 20°C.
 - * *Ambient pressure and temperature modulation:* Varies predictably with season, time of day, and to a small extent, weather.
 - *Pressure drop from ambient to pump inlet:* <10% (ignoring dust)
- * Things we don't yet know
 - * Where we will land
 - * Safe CO₂ utilization factor (tested 30%, probably ok at 50%)
 - Heating of gas from outside to pump inlet (so we'll assume 20C).

The MOXIE scroll compressor is under development by Air Squared, Inc., Broomfield, CO

Pump Trades and extensibility

- * Trade for MOXIE
 - * Scroll pump was found to be the only feasible approach on a small scale that can do real time compression without intermediate storage.
- * Trade for full-scale mission
 - * Scroll pump can be scaled at least 10-fold, is energy-efficient, and lifetime should be adequate.
 - Cryogenic options may be more favorable if cryogenic subsystem is used for O₂ storage. Energy may not be a factor.

SOXE Constraints

- * Things we know
 - * Area (22.7 cm²) and number of cells (10)
 - * Power supply limit: 4A, 35W.
- * Things we can estimate
 - * Starting ASR: ~2.5 Ω -cm² after a few test cycles
 - ***** OCV: ~0.8V
 - * Observed degradation: ~0.1 Ω -cm² per cycle.

* Things we don't know yet

- * *Safe operating voltage.* Presumed somewhere between 1.2V (test condition) and 1.46V (thermal neutral).
- * *Safe CO*₂ *utilization fraction:* We have run up to 60%. Currently running at 30%. General sense is that 50% is probably ok.

Stability with heat/cool cycling & test of intentional oxidation from power supply leakage

Boudouard and Ni Oxidation Limits

35

SOXE extensibility

Mars Oxygen ISRU Experiment

- MOXIE is intended to be ~1% scale model of eventual human-scale system
- * SOXE is readily scalable by increasing # of stacks.
- * Indications are that lifetime is acceptable but more tests needed.
- May want to cascade stacks to utilize "waste" CO₂

Dust deposition rates

Questions?

