

Mars Water Mining for Future Human Exploration

Jan. 13, 2016

Gerald (Jerry) Sanders
NASA/JSC

gerald.b.sanders@nasa.gov

Water on Mars (Simplified)

Atmosphere ppm levels Resource too scarce; not worth the effort

Hydrated Soil

- Water of hydration in minerals
- <2 to ~13% by mass</p>
- Primary at equator and lower latitudes
- At/near surface

Permafrost

- Subsurface ice/permafrost within the top 5 meters in the mid latitudes
- Deeper ice/ permafrost may exist at lower latitudes
- Concentration %?

Icy Soils

- Shallow, nearly pure ice in newly formed craters in mid-upper latitudes. Fresh impacts expose ice excavated from 0.3-2.0 meters depth
- Dirty ice at polar locations: Estimated to be 90-100 wt% H₂O, mixed with dust from global dust storms

Recurring Slope Lineae (RSL)

- Briny water has been theorized as cause of RSLs.
- Located at equatorfacing sunward-facing sides of craters/ridges in the 30° to 50° latitude range
- RSL sites and possibly the active gullies are Special Regions.

Aquifers

- Suspected to be >1 km below surface
- Possible Special Region

Not considered to be Special Regions

In Situ Water Extraction from Mars Soils

- Energy heats soil so that water converts to vapor (may transition thru liquid phase)
- Release of water helps further heat conduction into soil
- Water vapor follows 'path of least resistance' to bore hole
 - Vapor may also re-condense away from heat in colder soil
- Water vapor collected in cold trap in liquid/solid form
- Process may take hours

Water Extraction via Excavation & Processing Reactor

- Soil is removed from subsurface
- Soil is heated via thermal to remove water vapor; can be higher temperature than in situ heating
- Soil is removed from surface/subsurface and transferred to soil reactor
- Soil is heated via thermal, microwave, and/or gas convection to remove water vapor at higher temperatures and pressures than for in situ heating
- Water vapor is condensed and stored
- Soil is dumped back onto surface after processing

Water Extraction from Soil Architectures

Mars Surface Infrastructure and ISRU

Emplacement Phase

Consolidation or Utilization Phase

 X_{I-M} = distance between ISRU Plant and MAV

 X_{I-I} = distance between ISRU Plants

 A_{CE} = Area of Civil Engineering

 X_{H-I} = distance between Habitat and ISRU Plant

 X_{P-I} = distance between Power and ISRU Plant

 X_{P-H} = distance between Power and Habitat

 X_{I-R} = distance between ISRU Plant and Resource

 $A_R = Area of Resource$

End-to-End Soil Processing

Human Mission Mars Soil Excavation for Water

10

20

H₂O 1.238 kg/hr Soil 1500 kg/m3 lce 940 kg/m3

20

Water	Soil	Water	Soil	Total	Extraction	Ave Density	Tot Vol	FB Depth	FB Field
wt%	wt%	kg	kg	kg	80%	kg/m3	m3	cm	yds
3	97	14261.76	461130.2	475392.0	594240.0	1483.20	400.65	9.58	100.00
5	95	14261.76	270973.4	285235.2	356544.0	1472.00	242.22	5.79	60.46
8	92	14261.76	164010.2	178272.0	222840.0	1455.20	153.13	3.66	38.22
30	70	14261.76	33277.4	47539.2	59424.0	1332.00	44.61	1.07	11.14
70	30	14261.76	6112.2	20373.9	25467.4	1108.00	22.99	0.55	5.74

ISRU Examples and Analogies

- Excavation rates required for lunar 10 MT O₂/yr production range based on extraction efficiency of process selected and location
 - H₂ reduction at poles (~1% efficiency): 150 kg/hr
 - CH₄ reduction (~14% efficiency): 12 kg/hr
 - Electrowinning (up to 40%): 4 kg/hr
- Excavation rates required for 14.2 MT H₂O/mission production range based on water content
 - Hydrated soil (3%): 41 kg/hr
 - lcy soil (30%): 4 kg/hr

- Cratos & LMA rovers: 10 to 20 kg/bucket at field test in Hawaii
- Robotic excavation competitions:
 - 2009: 437 kg in 30 min.; remote operation
 - 2015: 118 kg in 20 min; autonomous operation

ROxygen: 5-10 kg/hrPILOT: 4.5-6 kg/hr

Pioneer SBIR: 4 kg/hr

MISME: 0.2 kg/hr

10 MT of lunar oxygen per year requires excavation of a Soccer field to a depth of 0.6 to 8 cm! (14% to 1% efficiencies)

14.2 MT of Mars water per mission requires excavation of a Football field to a depth of 1.1 to 9.6 cm! (30% to 3%

3 wt% 5 wt% 30 wt% 8 wt% 70 20 20 10 NNDUHDOWN

	H ₂ O	H₂O 1.238 kg/hr		Soil	1500 kg/m3					
		480 days		Ice	940 kg/m3					
ſ	Water	Soil	Water	Soil	Total	Extraction	Ave Density	Tot Vol	FB Depth	FB Field
	wt%	wt%	kg	kg	kg	80%	kg/m3	m3	cm	yds
	3	97	14261.76	461130.2	475392.0	594240.0	1483.20	400.65	9.58	100.00
	5	95	14261.76	270973.4	285235.2	356544.0	1472.00	242.22	5.79	60.46
	8	92	14261.76	164010.2	178272.0	222840.0	1455.20	153.13	3.66	38.22
	30	70	14261.76	33277.4	47539.2	59424.0	1332.00	44.61	1.07	11.14
	70	30	14261.76	6112.2	20373.9	25467.4	1108.00	22.99	0.55	5.74

Past/Recent Mars ISRU Technology Development

- Scoops and buckets (GRC, KSC, JPL, Univ., SBIRs)
- Auger and pneumatic transfer (KSC, GRC, SBIRs)

- H₂ Reduction of regolith reactors (NASA, LMA)
- Microwave soil processing (MSFC, JPL, SBIR)
- Open and closed Mars soil processing reactors (JSC, GRC, SBIRs)
- Downhole soil processing (MSFC, SBIRs)
- Capture for lunar/Mars soil processing (NASA, SBIRs)
- Water cleanup for lunar/Mars soil processing (KSC, JSC, SBIRs)

 Combustion, Pyrolysis, Oxidation/Steam Reforming (GRC, KSC, SBIRs)

Past/Recent Mars ISRU System Development

Lunar/Mars Soil Processing

■ 1st Gen H₂ Reduction from Regolith Systems (NASA, LMA)

ROxygen H₂ Reduction Water Electrolysis Cratos Excavator

> PILOT H₂ Reduction Water Electrolysis Bucketdrum Excavator

2nd Gen MARCO POLO soil processing system (JSC, KSC)

Soil Processing Module 10kg per batch; 5 kg/hr 0.15 kg/hr H₂O (3% water by mass)

Total ISRU system (3 modules)

- Assumptions: 3 independent ISRU systems each producing 40% of the needed products, 15% mass added for structure, 20% margin added to power and mass.
- O₂-only system assumes a cryofreezer for CO2 extraction and Solid Oxide Electrolysis for conversion

Trade: higher yield regolith (1 of 2)

- The real benefit of targeting higher yield regolith is the power saving
 - Less regolith to heat
 - Heating at a lower temperature

Trade: higher yield regolith (2 of 2)

- The MWIP team has identified Reference cases for soil-water resources. The best case is that of a Gypsum deposit which has 8 wt% water releasing at 150C.
 - The percentages on the graphs show the increase over the LOX-only case
 - Targeting water-Rich deposits offers marginal mass improvement, but significant power reduction

