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What is In Situ Resource Utilization (ISRU)? E\lcrai=a
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*x Utilization vs. Transformation

We “utilize” space resources frequently, from parachutes on Mars to
manufacturing in space vacuum

We're really talking about transformation of resources; oxygen from carbon
dioxide, hydrogen from ice, growing plants, etc.

* Gather the Low Hanging Fruit

Martian air is 1% as dense as on Earth, but 95% CO,. Act like a tree and
convert it to O,.

Ice or hydrated soil are higher fruit. You need to find it, excavate it,
transport it.

* Finally, think like a Martian
Warm in the sun, cold in the shade - beware the cold sky
Not much in the way of a cool breeze, but you sweat really well

Ice is nice, at hi%h latitudes as permafrost or on polar caps. Vacation spots
at the North Pole!

No fire, but lots of sparks
Generally clear skies



Basic DRA 5.0 scheme for Mars  Riiczai=a
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ERV-1 #‘- Red = transit to Mars
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Robotic ISRU: Make vs “buy” MemEs
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* Assumptions:
>25 kW power source will be emplaced on Mars
We have 12-14 months to produce propellant before crew launches

* Low hanging fruit: CO, 2 O,
Mass: ~1 mT for ISRU system saves ~25 mT transported O,

Constraints imposed on mission: None

* Higher fruit: H,0 + CO, 2 CH,
Mass: Additional ~0.7 mT for ISRU system saves ~7 mT transported CH,

Constraints imposed on mission:
* Landing where water is available
* Robotic prospecting, excavation, testing

Propellant-related S/C Mass (mT) Figures of merit (n:1) Other considerations
Scenario | stun/w| 02 | cia | Toal | Mo | brodued | Mesesmings ProductonSRU oo Tanng. (1N
(mT) ? site?
No ISRU 0 246 | 7 | 31.6 0
LOx only 1 0 7 8 24 24.6 24 3 No No Yes
LOx + CH4 1.7 0 0 1i7 30 31.6 18 19 Yes Yes No

Source: M-WIP study



What are we doing about it? MemEs
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* In the Laboratory
Discussed in Jerry Sanders talk

* Going to Mars: Priorities for human exploration
Radiation
* MARIE (on orbit with Odyssey, landed module 2001 cancelled)
* RAD (MSL Curiosity)
Entry, Descent, Landing
* MEDLI (MSL Curiosity), MEDLI2 (M2020)
Astronaut health & safety, focus on dust
* MECA (2001, cancelled, reflown for science value on Phoenix)
Environments and weather
* MEDA (M2020)
Demonstrating ISRU:
* MIP (2001, cancelled),
* MOXIE (M2020)
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Mars 2020 Rover
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Mars 2020 Project

MOXIE Functional Block Diagram

Rover Chassis

Thermal & Mechanical Interface

MOXIE Chassis

- Oxygen Plant

Intake 0l CO, Acquisition . ompositia Exhaust
Mars o " Sctro

TR & Compression easureme 0,, CO+CO,

Process Control Process Monitor

Electronics

Data Acquisition & Control, Power Conversion & Distribution

Data A Data B Powe
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ELX Box

Sensor Panel

Scroll Pump
SOXE Assy

~1:200 scale production
~1:400 scale operating time

No product storage
No fuel production




Mars 2020 Project

Day in the Life
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SOXE Challenges ~ icrmwarc (@ wreree

* Challenges & approaches
* Dry CO, electrolysis
* Custom materials
* Heat/cool cycling
* Controlled startup/shutdown; CTE matching
* Cold-side compression to minimize pre-heat energy
* Oxidation
* CO recirculation
* Coking
* Limit on operating voltage
* Low pressure environment
* Hermetic (glass) sealing to formed interconnect
* Compression fixture
* Shock & vibration
* Isolation mounting if needed

* Under development by Ceramatec, Inc. (a
division of CoorsTek)




SOXE Constraints MemEs
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* Things we know
Area (22.7 cm?) and number of cells (10)
Power supply limit: 4A, 35W.

* Things we can estimate

Starting ASR: ~2.5 Q2 -cm? after a few test cycles
BENV 0.6V
Observed degradation: ~0.1 €2 -cm? per cycle.

* Things we don’t know yet

Safe operating voltage. Presumed somewhere between 1.2V (test
condition) and 1.46V (thermal neutral).

Safe CO, utilization fraction: We have run up to 60%. Currently
running at 30%. General sense is that 50% is probably ok.
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Pump constraints o] [ g

* Things we can estimate:
* Reference performance: 79 g/hr tor inlet gas P=7.6 Torr, T= 20°C.

* Ambient pressure and temperature modulation: Varies predictably
with season, time of day, and to a small extent, weather.

Mars Oxygen %@\ ) ~
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* Pressure drop from ambient to pump inlet: <10% (ignoring dust)

* Things we don’t yet know
* Where we will land
* Safe CO, utilization factor (tested 30%, probably ok at 50%)

* Heating of gas from outside to pump inlet (so we’ll assume
200).

The MOXIE scroll compressor is under development by
Air Squared, Inc., Broomfield, CO




Landing site characteristics Mosgs
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* Potential landing site elevations and pressure
Planet average: ~4.6 Torr, but not really relevant (see below)

Elevation: Varies over many kilometers, dominated by hemisgheric
dichotomy. Corresponding surface pressure varies by more than x2.

* Likely landing sites
Prior to M2020: Lowlands favored for EDL. MSL, Viking < -3.6 km.
M2020: Sites considered between -2.6 and -0.6 km
Human landing: For EDL reasons, almost certain to be < -3.5 km.

* Types of pressure variation the rover will experience:
Seasonal: Up to 30% due to polar deposition of CO, (predictable)
Diurnal: 5-12% depending on topography (predictable)

Weather: A few % typically, up to 12% increase in global dust
storms

Local topography: Several %, but below resolution of GCM
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Example: Viking Pressure Data  [udchai=e

Yiking Computer Facility
Dept. of Atmospheric Sciences
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What determines production rate? Ruscru=es
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* MOXIE production rate is a balance of:
SOXE capability (up to ~20g/hr O,)
Power supply capability (limits production to 12 g/hr O,)
Landing site (elevation determines inlet gas pressure)
Pump capability (for candidate landing sites, <10 g/hr O,)
Safe operating margins (what fraction of the CO, can we use?)

Season and time of day (also determines inlet gas density)

* Demonstration is limited to M2020 capabilities
Limited volume, mass for experiment
Warm enclosure

Extremely limited power, shared with 6 other instruments and
rover functions (driving, drilling, survival heating, etc.)

18
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ASR, available gas and power, determine Moesaer
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SOXE Performance o oy
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Filter sensitivity to dust

Pressure
IS Drop P,
P - P. T
Volume =1 "2
_7: Flowrate ‘T 72 If
Resistance ~ __  8nL
to flow R = L4
s -

MOXIE will ingest ~50 mg dust
through a 264 cm? pleated filter, or ~2
o i

Incident velocity v, typically ~5 cm/s,
comparable to Thomas study (right),
but particles are typically larger.

Begin to get in trouble between 1-10
g/m*

Full-scale MOXIE will ingest ~5 kg
dust over 1 year

Dust storms result in up to x10
deposition.
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vo-=5 em/s, d,=0.15 pm. From D. Thomas et al. (1999) J.
Aero. Sci., 30 (2), 235-246.



Dust conclusions Mo
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* - Filters need to have huge surface area if they are not to
obstruct flow, and are degraded by a few microns of dust

* The way forward?
Filter-less first-stage pumping?

Cyclone or electrostatic mitigation?

Pressure
P Drop P,

P—-P hy
Volume f: "2
R\

Flowrate
I he_sisEhTa'_'Z"{_'_g}]_L'_'

to flow ="

| L -



Considerations in eventual design Jucrdse
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* Where do we land? Weigh perceived science value against:
Ready availability of water ice (i.e. high latitude)
Safety/ease of landing (low elevation, maybe low latitude)
Surface traverse capability

* Assuming low latitude (no ice)... what limits performance? What
infrastructure is available?

Human base will likely need nuclear reactor = plentiful power
during ISRU stage

Oxygen storage will likely need cryogenics 2 may as well use it
for other systems, e.g.

* Parallel, out-of-phase cryogenic CO, acquisition instead of pump.
* Separation of Ar, N, for buffer gases in habitat.
* Further purification of breathable O,.

* If we land at high latitude, ice would be readily available...
Would we want to do CO, ISRU at all, or just get O, from ice?
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Special thanks to the amazing JPL Project Team!

MOXIE Testbed



More MOXIE

Backup slides
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Where does MOXIE power go? @/ .

* SOXE current: 60W
*aump: 110W
* Stack heaters (mostly make-up heat): 72W
* Sensors, incl. panel heating: OW

* Electronics, mostly DC/DC conversion: 67W
Total 320W

Electronics, Sy
67
Sensors, 9

Heater, 72 Pump, 110




What limits O, production? MesEr
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1. Inlet flow
Together with CO, utilization fraction, determines O, production
Limited by overall pump capability
Limited by inlet gas density, which is determined by:

* Ambient pressure & temperature

* Pressure drop across filter, including dust

2. Available power
Safe current limit of 4A
Power limit of 35W per supply (not normally a constraint)
Circuit limit of 10A (not normally a constraint)

Thermal constraints at high power (depends on many factors)

3. SOXE capability

All the electrochemistry is captured in one empirical number, ASR, and a
more-or-less constant number, OCV

Scale by area (22.7 cm? and number of cells (5x2=10)
Limited by safe operating voltage and % CO, utilization, largely TBD

How do these factors rank in importance? 28



Global Climate Model predicts
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1A B C D | E K L M N (o) R | S

1 | MOLA GCM (Forget et al) [2] VL1-based [3]
2 \ Lat Long Elevation Ls 150 Ls 260 Max* Low High
3 \ # (deg N) deg (E) (m) Low (T) High(T) | Low (T) High(T) (Torr) | (Torr) (Torr)
4 \ 7 Nili Fossae 21.097 74.3494 -655 3.89 4.12 4.84 5.18 5.72 3.76 5.63
5 \ E. Margaritifer [b] -5.596 353.835 -1249 3.98 4.27 4.87 5.33 5.78

6 \ 2 Eberswalde [a] -23.7749 -33.5147 -1400 4.19 4.57 4.85 5.32 5.74 4.04 6.06
7 | Nili Carbonate [b] 21.7 78.9 -1458 4.19 4.29 532 551 6.14

8 \ 8 SW Melas -9.8132 -76.4679 -1886 4.19 4.61 5.02 5.57 6.17 4,23 6.34
9 \ 1 Columbia Hills [a] -14.5478 175.6255 -1900 4.22 4.62 5.17 5.79 6.22 4.23 6.34
10 \ 6 NE Syrtis 17.8889 77.1599 -2035 4.36 4.52 5.57 5.82 6.53 4.27 6.40
11 \ 3 Holden Crater -26.62 -34.8713 -2129 4.42 4.89 5.03 5.57 5.99 4.30 6.46
12 \ 5 Mawrth Valles 23.9685 -19.0609 -2247 4.45 4.58 5.67 5.93 6.50 4.38 6.58
13 \ 9 Hypanis Valles [a,c] 11.8 314.6 -2600 4.59 481 5.84 6.22 6.92

14 | 4 Jezero Crater 18.4386 77.5031 -2620 4.57 4.76 5.85 6.14 6.90 4.50 6.76
15 \ VL-1[1] 22.48 -49.79 -3627 4.82 4.98 6.17 6.54 7.30

16 \ MSL (Landing)** -4.59 137.44 -4400 5.22 5.70 6.50 7.28 8.00

17 \ VL-2 [1] 47.97 -225.47 -4505 5.49 5.58 7.41 7.61 8.28

18 \ 10 Mclaughlin Crater [c] 21.818 337.749 -5028 5.60 5.86 7.32 7.76 8.45

19 |
20 Notes
21 |*  "Dust Storm Max Solar" mode.
22 |**  Now at-4292
23 |[a] Added at 2nd workshop
24 \[b] Eliminated after 2nd workshop
25 \ [c] Under consideration for s¢ience assessment only.
26 \
27 \[1] Smith, D.E. et al, J. Geophys. Res. 106, 23689 (2001)
28 [[2] http://www-mars.Imd.jussieu.fr/mcd_python/. "Climatology Ave"mode
29 [[3] From Mike Mischna




SOXE Development Summary @ e

* Results & Findings:
* Low ASRs (2-2.5)
* Stable to heat/cool cycling
* Oxidation is a bigger challenge than coking
* SOXE capability exceeds MOXIE resources on Mars

* Still to be studied:
* Limits on CO, utilization, voltage, temperature
* Long-term performance (>1000 hrs)

-




SOXE extensibility

* MOXIE is intended to be ~1% scale
model of eventual human-scale system

* SOXE is readily scalable by increasing #
of stacks.

* Indications are that lifetime is acceptable
but more tests needed.

* May want to cascade stacks to utilize
“waste” CO,

Mars Oxygen %\ ) -
ISRU Experiment s




Pump Trades and extensibility Moesagr
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* Trade for MOXIE

Scroll pump was found to be the only feasible approach on a
small scale that can do real time compression without
intermediate storage.

*x Trade for full-scale mission

Scroll pump can be scaled at least 10-fold, is energy-efficient,
and lifetime should be adequate.

Cryogenic options may be more favorable if cryogenic
subsystem is used for O, storage. Energy may not be a factor.

Stationary Scroll [ ¢

Attaches Directly to
Housi b




Benefits of ISRU propellant Meigr
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Ascent capsule 4 6 Includes crew of 6

Ascent propulsion stage 3 5 Typically 15% of propellant
requirement

Propellant (CH4 + O2) 26 39

Mass saved in LEO if 300 -500 440-800  Depends on assumptions re:

ISRU produces CH4 + O2 aerocapture/propulsion

Mass saved in LEO if 230-380 330-620  Depends on assumptions re:

ISRU produces only O2 aerocapture/propulsion



