

An Optical Interferometry Science Briefing

Gail Schaefer

Director of the CHARA Array Georgia State University

Current Long Baseline Optical Interferometers

CHARA Array Mount Wilson, CA Six 1 m telescopes 330 m max baseline Visible + Near IR NPOI Anderson Mesa, AZ Six 12.5 cm apertures 100 m max baseline Visible

LBTI Mount Graham, AZ Two 8 m telescopes 23 m max baseline Mid IR

VLTI Paranal, Chile Four 8-m UTs: 130 m max baseline Four 1.8 m ATs: 200 m max baseline Near + mid IR

MROI

Magdalena, NM Planned: Ten 1.4 m telescopes Planned: 340 m max baseline Near IR UNDER CONSTRUCTION

Stellar Diameters

• Empirical HR Diagram

- 693 stars, $\sigma_{\theta} < 5\%$
- Angular Diameter + Parallax

Georgia<u>State</u> University

- Linear Radius
- Diameter + Bolometric Flux
 - Effective Temperature

Stellar Diameters

• Compute masses and ages from evolutionary tracks/isochrones

Georgia<u>State</u> University

- Test evolutionary models
- Refine color-magnitude relations
- Refine surface brightness relations
- Test asteroseismic scaling relations

• Pulsation Parallax - Merand et al. (2005, 2015)

Imaging Stellar Surfaces

Rapid Rotation

Starspots

Illustration credit: NASA, ESA, and E. Wheatley (STScI)

Classical Nova Explosions Nova Delphini 2013

- Changes in apparent expansion optically thick core surrounded by diffuse envelope that cools over time
- Geometric disk: 4.5 kpc
- Asymmetric shape detected as early as t=2d

High contrast close companion orbits Polaris every 30 years

More luminous than predicted

Evans et al. (2024)

Spots on the surface of Polaris!

Mass Transfer in Interacting Binaries

Beta Lyrae P = 12.9 d a = 0.87 mas

Zhao et al. (2008)

Gardner et al. (2021)

Gardner et al. (2021)

Eclipsing Binary: Epsilon Aurigae

Kloppenborg et al. (2010, 2015) AAVSO, Hopkins et al. (2012)

Eclipsing Binary: Epsilon Aurigae

Kloppenborg et al. (2010, 2015)

Full disk 80AU -

Representative Size Scales of protoplanetary disks for nearby star-forming regions

Circumplanetary accretion disk 0.03 AU = 0.2 milliarcseconds Gaps 5AU ~50 milliarcseconds

Based on hydrodynamical models and radiative transfer calculations of Zhaohuan Zhu, Barbara Whitney, Robin Dong

Monnier et al. (2019)

Georgia<u>State</u> University

HD 98922 – VLTI GRAVITY GRAVITY Collaboration et al. (2024)

Georgia<u>State</u> University

V1925 Aql – CHARA + VLTI Ibrahim et al. (2023)

x < -E (mas)

x < -E (mas)

Hosts Survey for Exozodiacal Dust

- Nulling with LBTI N-band (8-13 μ m)
- Suppress starlight probe faint circumstellar emission
- Sample of 38 stars 10 show significant excess
- Correlation of our detections with the presence of cold dust, but not with stellar spectral type or age
- Sun-like stars have relatively low HZ dust levels
 - Not a major limitation to direct imaging of Earth-like planets

Ertel et al. (2020)

 Difference in the fringe envelope position of the two objects as seen by the beam combiners is a measure of the object separation on sky GeorgiaState University

- VLTI/GRAVITY extends field of view out to 2" (UT) and 4" (AT)
- GRAVITY wide out to 30"

Pfuhl et al. (2021), Glindemann et al. (2003)

Active Galactic Nuclei Central Supermassive Black Hole

Type 2 AGN – Edge On

M77 – NGC 1068: VLTI MATISSE Dusty disk obscures dust sublimation ring

Gámez-Rosas et al. (2022) Leftley et a. (2024): 2-10 µm https://www.eso.org/public/news/eso2203/

Type 1 AGN – Face On

NGC 4151: CHARA + Keck Innermost dusty ring perpendicular to jet Kishimoto et al. (2022)

A look back and forward:

Past and Future Priorities for Optical Long Baseline Interferometry in Astronomy Decadal Surveys

Decadal Survey for the 1990s

•Ground-based Priorities – Moderate Programs

- Adaptive Optics
- Interferometry

• "The Moon as an Observatory Site"

• High sensitivity

ASTRONOMY

AND

ASTROPHYSICS

- Kilometer-sized baselines
- No terrestrial atmosphere
- No spacecraft positioning

Artist Conception of Lunar Interferometer in 1990 Decadal Survey

Astro 1990+2000 Decadal Surveys Space-based Priorities

THE DECADE OF DISCOVERY IN

ASTRONOMY AND ASTROPHYSICS

NATIONAL RESEARCH COUNCIL

Astro2010 Decadal Survey

New Worlds, New Horizons

in Astronomy and Astrophysics

 "In considering possible exoplanet missions for the next decade, the committee gave serious consideration to SIMLite but decided against recommending it."

- Large cost (\$1.9 billion)
- Long time to launch
- Success of Kepler planet detection efficiency

SIM Lite

GeorgiaState University

Pathways to Discovery in **Astronomy and Astrophysics** for the 2020s

Search For Life on Exoplanets

• Mid-IR interferometry: temperature, radii, and atmospheric features of planets around FGKM stars

• Stars, the Sun, and Stellar Populations

 Maintaining and expanding the leading U.S. capabilities in optical long-baseline interferometry, such as the CHARA Array, NPOI and MROI.

Georgia State University

- Future Needs: 1 km baselines, 2–3 m aperture telescopes, 0.9–1 μm instrumentation
- Characterizing full stellar and brown dwarf radii
- Optical/IR Observations from the Ground
 - NSF funding realities unlikely to support all 3
 - US Interferometry community: formulate plan for collective goal

Opportunities for milli- to micro-arcsecond spatial resolution

- High sensitivity and stability
- Radii of the coolest stars and brown dwarfs
- Close companions around planet hosting stars
- Radii and inner regions of young stellar objects
- Sizes of newborn stars
- Active galactic Nuclei