Hypotheses for Near-Surface Exchange of Methane on Mars

Renyu Hu

Jet Propulsion Laboratory
California Institute of Technology
With Anthony Bloom, Peter Gao, Charles Miller,
and Yuk Yung
December 8, 2015

Evidence of Profound Evolution of Mars Atmosphere

Carbon Escape via CO Photodissociation

Hu et al. 2015c

Carbon Escape via CO Photodissociation

Carbonate Formation vs. Escape

Massive escape is not required by the isotopic data

The upper bound of carbonate formation is 0.5 bar, unless most carbonate formed in open-water systems

Not Only Carbon ...

Isotopic Ratio	Mars Value	Relative to
δ^{13} C in CO_2	46 per mil	VPDB
δD in H ₂ O	5880 per mil	Earth Ocean (VSMOW)
δ^{18} O in CO_2	48 per mil	Earth Ocean (VSMOW)
δ^{15} N in N $_2$	572 per mil	Earth Atmosphere
δ^{38} Ar	310 per mil	Sun

MSL/TLS Measurements of Methane

Deliquescence of Perchlorate in the Subsurface

MSL/REMS data are used as the upper boundary condition to derive the subsurface temperature and humidity profiles

Deliquescence occurs in the top 5 – 15 cm of soil, on a daily basis (Case L, consistent with Martin-Torres et al. 2015)

Persisting liquid solution could occur below ~10 cm depth staring from L_s ~50°

Hu et al. 2016

Three Hypotheses

Regolith Adsorption/Desorption

Biological Conversion from Organic Matter

Deliquescence Modulated

No new methane in short timescales

Outburst from subsurface permanent aquifer

New methane in short timescales

Regolith Adsorption and Desorption

Assumes methane normally adsorbed by the regolith, and deliquescence deactivates adsorption sites and releases methane into the atmosphere

The adsorption energy and methane's atmospheric residence time are two "free" parameters to fit the observation

Biological Conversion from Organic Matter

Assumes yeast-like methanogens become active with liquid solution resulted from deliquescence, having Earth-like temperature dependency on the conversion efficiency

Biological Conversion from Organic Matter

Replenishing the organic matter reservoir in the soil is possible

Outburst from Subsurface Permanent Aquifer

A subsurface permanent aquifer may exist at a depth of 5 km at Gale Crater

This aquifer must be partially sealed by an ice or clathrate layer to produce the methane burst

Figure from Anthony et al. 2012

Outburst from Subsurface Permanent Aquifer

If 7 ppb of methane is added to the atmosphere globally each season $L_s^{\sim}50^{\circ} - 90^{\circ}$ over the past 3 billion years

- -> 140 mbar of CO₂ is accumulated in the atmosphere
- -> 8.4E-3 mol/g of C₆H₅Cl is accumulated in the top 1 km of soil

The source must be local

Summary and Prospect

