

Mars Atmospheric Chemistry and Methane Measurements

Dr. Chris R. Webster

Jet Propulsion Laboratory California Institute of Technology

[Contributions from SAM team (PI Paul Mahaffy) including Sushil Atreya]

KISS Study on

Methane On Mars

December 7th - 11th 2015

KISS Study - Methane on Mars, Webster 2015

Mars Atmosphere Today

- Typical surface pressures 6-8 mbar, scale height 11 km, surface temperatures ~210 K
- Even when above freezing temperature, surface pressure too low for liquid water to form.
- Mainly CO₂ (96%), argon-40 (2%), nitrogen (2%), oxygen (0.15%) and CO (0.06%) Viking, SAM
- Each pole in continuous darkness during winter, when up to 25% of CO₂ condenses at caps, subliming back into atmosphere in spring to produce seasonal cycles in pressure and composition.
- Local dust clouds, global dust storms every 2 years, cirrus, frost- MRO
- Thin ozone layer above Mars southern pole in winter
- Trace gases detected: H₂O, O₃, CH₄, H₂O₂,

- Villanueva et al. *Icarus*, 2012
- Atreya, Wong, Catling
- Yung et al.

KISS Study - Methane on Mars, Webster 2015

• Sci-News.com

HOME ASTRONOMY SPACE EXPLORATION ARCHAEOLOGY PALEONTOLOGY BIOLOGY PH'

Scientists Discover Third Ozone Layer in Atmosphere of Mars

« PREVIOL

- Known ozone layers near surface and at 40-60 km
- Montmessin and Lefevre (Nat. Geosciences 2013) use SPICAM-MEX data to discover 3rd ozone
- layer at 30-70 km over southern winter pole
- Recombination of O atoms from CO2 photolysis, then transport

KISS Study - Methane on Mars, Webster 2015

Mars Atmospheric Loss

- McElroy 1972; McElroy + Nier + Yung 1976
- Viking 1976 nitrogen isotope enrichment provided evidence of atmospheric loss
- Toby Owen D/H and hydrogen escape:

Science 24 June 1988: 1767.

Deuterium on Mars: The Abundance of HDO and the Value of D/H

Tobias Owen, Jean Pierre Maillard, Catherine de Bergh, Barry L. Lutz

Deuterium on Mars has been detected by the resolution of several Doppler-shifted lines of HDO near 3.7 micrometers in the planet's spectrum. The ratio of deuterium to hydrogen is $(9 \pm 4) \times 10^{-4}$; the abundance of H₂O was derived from lines near 1.1 micrometers. This ratio is enriched on Mars over the telluric value by a factor of 6 ± 3 . The enrichment implies that hydrogen escaped more rapidly from Mars in the past than it does now, consistent with a dense and warm ancient atmosphere on the planet.

- Mars once had a thicker atmosphere and surface liquid water, lost through:
 - Planet's core cooled and solidified (70% density of Earth), losing magnetic field ~4 Gya
 - Catastrophic collision with large body arrested dynamo effect?
 - Gradual erosion by
 - Jeans KE escape
 - Photochemical production of ions that join with e- to reach escape velocities
 - Solar wind pickup and acceleration of ions along solar wind magnetic field, some returning to atmosphere to energize heavier neutrals to escape in sputtering process.

Congoing Processes in the Upper Atmosphere MAVEN 2013:

- Upper atmosphere, ionosphere, magnetosphere
- Response to solar and solar-wind events
- Ability of atmospheric molecules and atoms to escape to space

KISS Study - Methane on Mars, Webster 2015

March 2015 interplanetary coronal mass ejection impact -> Large enhancement in escape rate of ions to space. Jakosky et al. *Science* <u>350</u>, Nov 2015.

SAM Atmospheric Isotope Ratios -synergy of mass spectrometry *vs* spectroscopy

	A suite of 8 isotope ratios show early atmospheric escape			
lsotopes		Mars value ‰	Instrument	Reference
δ ³⁸	Ar _{Sun}	310 ± 31	QMS	Atreya et al. (2013, GRL)
δ40	Ar _{Earth}	5,419 ± 1013	QMS	Mahaffy et al. (2013, Science)
δ15	N_{Earth}	572 ± 82	QMS	Wong et al. (2013, GRL)
δ ¹³	C _{VPDB}	45 ± 12	QMS	Mahaffy et al. (2013, Science)
δ ¹³	C _{VPDB}	46 ± 4	TLS	Webster et al. (2013, Science)
δ18	O _{SMOW}	48 ± 5	u	и и
δ17	O _{SMOW}	24 ± 5	u	и и
δ13	Cδ ¹⁸ O	109 ± 31	u	и и
δD	SMOW	4,950 ± 1080	"	и и
u		4,231 ± 33	u	Leshin et al. (2013, Science; updated)

Atmosphere-surface Interactions

- Current day atmospheric d¹³C in CO₂ (+46 per mil) is the result of the history of atmospheric loss (¹³C enrichment) and carbonate deposition (¹³C depletion)
- Hu et al. show that escape of C via CO photodissociation and sputtering enriches ¹³C, a process partially compensated by moderate carbonate precipitation.

* Keck Martian Atmosphere Shows Significant Early Loss

D/H ratio in Yellowknife Bay Mudstone -Mahaffy et al. Science Dec 2014

- D/H from both evolved water (TLS) and hydrogen (QMS) at 3 x SMOW.
- Low D/H in bound OH in clays formed 2.9-3.5 Gya (Hesperian) shows that considerable water was lost both before and after this point.
- GEL at Cumberland mudstone formation ~150m compared to ~50m today.

Earth-based Observations- H₂O and HDO

Villanueva et al., Science 348, 218-221, 2014

KISS Study - Methane on Mars, Webster 2015

Earth-based Observations – H_2O_2

Therese Encrenaz (Paris Observatory) et al., *Icarus*, 2004

- Discovered 40 ppbv H₂O₂ on Mars at subsolar point (white dot) in summer time using the 3 m NASA IRTF at Hawaii
- Spatial and seasonal variations

Martian dust devils, electrochemistry and oxidants

Sushil Atreya et al. (2006) – Large turboelectric fields in dust storms can produce greatly enhanced OH and therefore H_2O_2 . Resulting superoxides and other oxidants could destroy methane gas and form formaldehyde or methanol.

Spectral Resolution

Earth-based Observations – CH₄?

- Aug 1969 One week after Moon landing- in JPL's Von Karman auditorium.... Walter Cronkite
- Mariners 6 and 7 IRS (PI George Pimental) announced discovery of significant NH₃ and CH₄ on Mars.....later retracted....

KISS Study - Methane on Mars, Webster 2015

Vittorio Formisano et al.

(Institute of Physics & Interplanetary Space)

Geminale et al. PSS 59 (2011) 137-148

- Planetary Fourier Spectrometer on ESA's Mars Express
- Designed to measure vertical profiles of CO_2 and column H₂O, CO, CH₄ and H₂CO
- Detected 15 ± 5 ppbv CH₄ in the Martian atmosphere by averaging 15,687 spectra
- CH₄ signatures in 9 lines (!)
- CH₄ mixing ratio variable from 0 to 40 ppbv
- CH₄ and H₂O emanate from 3 locations: Arabia Terra, Elysium Planum, and Arcadia-Memnomia
- Conclude source is northern cap, whose summertime release is sufficient to explain global mean of 15 ± 5 ppbv.

Michael J. Mumma et al. (NASA GSFC) -2004

- Observations mainly from the 8 m Gemini South telescope in Chile (& NASA's IRTF, Mauna Kea)
- Relies on Doppler shifts
- Multiple spectral features of CH₄ seen
 - Need to subtract Earth CH₄
- Lower amounts at the higher latitudes 20-60 ppbv
- Significant enhancement at equatorial regions up to 40 ppbv – in region of changing topography
 transition highlands to plain, scarps, cliff faces
- Enhancement also over deep rift Valles Marineris

 steep high cliffs
 - Is methane diffusing under the permafrost and emerging at cliff faces or fissures?

17

Vladimir Krasnopolski et al. (Catholic University) et al. *Icarus* 2004, EPSC 2011

- Detected 10 ± 3 ppbv CH₄ in Mars atmosphere where lifetime is 340 years
- 270 tons CH₄ therefore produced per year
- Concluded that observed CH₄ is from methanogenesis by living subterranean organisms (Martian biota scarce and sterile except oases)

- **Conflicting results** from 0 ppbv to 60 ppbv
- Differing distributions uniform distribution to high local variations- and widely differing interpretations

nature	Vol 460 6 August 2009 doi:10.1038/nature08228
LETTERS	

Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics

Franck Lefèvre¹ & François Forget²

So what did TLS-SAM on Curiosity see?

TLS – Tunable Laser Absorption Spectrosco

Tunable Laser Spectrometer (TLS)

Mass = 3.3 kg

Near-IR TDL from Nanoplus, Germany

IC laser from MDL-JPL

TLS-SAM Methane Search

- Fore-optics chamber contains residual terrestrial air
- Use "difference method" comparing full sample cell to empty sample cell

Direct Ingest Spectra

- A. "Low methane" from Sols 79, 81, 106, 292, 313 and 684;
- B. "High methane" from Sol 474 only

"Mars Methane Detection and Variability at Gale Crater",

Webster et al., *Science*, **347**, 415-417 (2015)

24

Possible Methane Sources and Sinks Winds UV 0 C **Cosmic Dust Carbon Dioxide** Photochemistry Methane Surface Organics Outgassing Formaldehyde Methanol Methane Clathrate Subsurface Storage Microbes Methane Olivine (rock) Water

Methane Sources to consider

- Unknown photochemical processes in the atmosphere that may involve dust (heterogeneous chemistry)
- Geological production such as serpentinization of olivine
- UV degradation of IDP's, meteoritically-delivered organics
- Release from gas trapped in subsurface clathrates
- Release from regolith-adsorbed gas
- Erosion of basalt with methane inclusions
- Geothermal production
- Production from sub-surface methanogens

Hu.....Yung group (2015):

- Release following deliquescence of perchlorate salts
- Microorganism release of methane from organic decay in solution
- Deep subsurface aquifers that produce bursts of methane as a result of freezing and thawing of the permafrost as in the Arctic – expect seasonal dependence (?)

Methane Sinks

- Photochemical processes (Krashnopolsky et al., 2004) UV +OH oxidation
- Electrical discharges in dust devils (Farrell et al., 2006)
- Reactions with oxidants in the soil (Atreya et al., 2006).
- Wind erosion of quartz grains Methane is removed by reactions with abraded silicates, which leads to covalent ≡Si-CH₃ bonds and thus an enrichment of the soil with reduced carbon (Jensen et al., 2014; Bak et al. EPL 2015 in press).- could explain the fast disappearance of methane.

TLS-SAM Low Methane Background 🔤

A contribution from a variety of sources?

Consider UV degradation of surface material

- Surface meteoric material: micrometeorites from accreted IDP, and carbonaceous chondrites containing few wt% organic matter;
- Accreted IDP's deliver 90% of organic C with average C content of 10%- a carbon-limited (not UV) process.
- UV/CH₄ model of Schuerger et al. (2012) predicts
 - Over geological time, a present day 2.2 ppbv methane for 20% conversion efficiencies of 10 wt% C material
 - Very small diurnal/seasonal changes (daily input is 0.02 pptv)
- TLS-SAM background level is ~3 times < model prediction of ~2.2 ppbv
 - Therefore infall amount, C conversion efficiency or organic content is overestimated by factor of ~3.
 - But lab measurements do NOT accurately simulate Mars conditions, such as inclusion of surface oxidants
 - Steady infall/conversion cannot explain large episodic bursts.

TLS-SAM Methane vs Solar Longitude L_s

New mean value = 0.5 ppbv

TLS-SAM Methane vs Solar Longitude L N. Spring N. Summer N. Autumn N. Winter

30

TLS-SAM High Methane

- High methane of ~7 ppbv is within range of UV/CH₄ model predictions if transported from region of airburst/bolide, but MRO shows no measurable impacts at Gale Crater since landing.
- No correlations with pressure, surface/air temperature, opacity, UV flux, in situ H₂O, surface mineralogy/composition.
- Anti-correlations with column water, oxygen now ruled out.
- Consistent with a small local source producing a temporal (not location) change.
- Wind fields and daytime

increase indicate source to the north.

Encounters with Cometary Debris Fields?

Geochemical Perspectives Letters v2, n1 | doi: 10.7185/geochemlet.1602. Dec 2015.

- Could "meteor showers" deliver macromolecular carbon MMC that produces CH4 under UV photolysis- possibly at higher altitudes?
- Maarten-Roos/ Atreya 2015 conclude no correlation with cometary debris/meteoritic infall.
- Fries et al. (GPL, 2015) use data from PFS, Mumma, MSL to show possible dependence on cometary debris encounters
 - But more recent TLS-SAM measurements show no repetition.

Local Source Within Gale Crater?

Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

Jorge Pla-García, Scot C.R. Rafkin, and Alberto G. Fairén²

Southwest Research Institute, Boulder CO 80302, USA

²Centro de Astrobiología (CSIC-INTA) Carretera de Ajalvir, km.4, 28850 Torrejón de Ardoz, Madrid, Spain EGU Abstract 2016

- Modeling supports local source within Gale Crater with existing chemistry, OR
- Source outside Gale Crater with subsequent deep mixing and rapid destruction

"Zahnle, who was also critical of the 2003 and 2004 methane reports, said that it wouldn't take much from the rover to lead scientists astray. After all, the rover contains within a chamber some methane at a concentration 1,000 times higher than the puff supposedly found in Mars' atmosphere. Curiosity's methane comes from Earth" – Discovery News

- TLS foreoptics chamber contains ~12 ppmv methane, or ~2 nanomoles CH₄, or <u>~10¹⁵ molecules.</u>
- A 10-m diam sphere around the rover with 7 ppbv methane contains 1 micromole of methane, or <u>~10¹⁸ molecules</u>.
- If surface winds are only ~1m/sec, sphere volume is replenished in 10 secs, so to sustain high methane for 2 months, would need a source of ~<u>5 x 10²³ molecules</u>!
- Also, foreoptics chamber CH₄ content shows no evidence of loss over time.

- The <u>very low background</u> level of methane (~0.7 ppbv) could result from the UV degradation of surface organics, but is 3 times lower than model predictions. A geological or biological source cannot be determined. A seasonal dependence or time decay may be evident.
- The <u>sudden spike</u> in methane (~7 ppbv) indicates a release from either modern production or from storage of older methane in clathrates. Higher daytime values suggest a northerly source. No obvious correlations with oxygen, other species, meteoritic infall, cometary debris. Seasonal repetition not observed.
- The sudden rise in methane and <u>the fact that it came back down quickly</u> indicate the source was most likely relatively localized and small.
- These observations of methane are suggestive of a *currently active Mars*.

Advanced TLS Instruments for Mars Methane Isotope Measurements

- TLS-SAM-MSL (Webster, Mahaffy)
 - Sensitivity 0.1 ppbv with enrichment

- Enhanced pathlength digital TLS (Webster, Flesch et al. JPL)
 - Sensitivity 20 pptv with enrichment
- Cavity Ringdown TLS (Okamura (Caltech), Christensen (JPL))
 - Sensitivity 10 pptv
- Integrated Cavity Output Spectroscopy (ICOS)- Vinogradov (IKI, Russia) for ExoMars 2018 Lander
 - Sensitivity <50 pptv

- ISRO's first planetary mission after successful Chandrayaan Moon mission
- Entered Mars orbit Sep 2014
- Methane spectrometer will subtract solar reflectance at 1.65 μ m from that at 3.3 μ m to produce column CH₄ in a global map.
- Sensitivity undetermined, expected 10 ppbv

NOMAD on ExoMars Orbiter

- Nadir and Occultation for MArs Discovery (NOMAD)

 two instruments, echelle grating, 0.2-0.4 cm⁻¹
 resolution
- PI is Ann Vandaele, Belgian Institute for Space Aeronomy
- Expected detectivity of ~25 pptv in solar occultation, and 11 ppbv in nadir view.

KISS Study - Methane on Mars, Webster 2015

- Solar occultation orbiting FTIR with 0.03 cm⁻¹ spectral resolution
- Long pathlength (~10 km), high vertical resolution
- Huge number of spectral lines, IR bands, many molecules simultaneously
- Pl's Paul Wennberg (Caltech) and Vicky Hipkin (Canadian Space Agency), with Drummond, Toon, Allen, Blavier, Brown, Kleinbohl, Abbatt, Lollar, Strong, Walker, Bernath, Clancy, Coutis, DesMarais, Eiler, Yung, Encrenaz, McConnell

KISS Study - Methane on Mars, Webster 2015