The Goddard Center for Astrobiology

http://astrobiology.gsfc.nasa.gov

... Understanding how life emerges from cosmic and planetary precursors

"Methane on Mars: Spatial & Temporal Variability"

Michael J. Mumma Center for Astrobiology & Solar System Exploration Division NASA's Goddard Space Flight Center

and

Department of Astronomy University of Maryland

KISS – Methane on Mars

Pasadena, CA

Dec 8, 2015

Trace Gases: CH₄, H₂O, HDO, H₂O₂, CO, O₂, O₃, etc.
3-D spatial: longitude, latitude, & vertical
1-D temporal: (diurnal, seasonal, & inter-annual)
High resolution (spectral & spatial)

Orbiters & Rovers MGS, MRO, Mars Express, Maven, ExoMars 2016 Curiosity, ExoMars 2018, Mars 2020 Ground-based

> Keck, NASA-IRTF, VLT ALMA, SOFIA

Frequency in wavenumbers [cm⁻¹]

3 nuclear spin species,

A, E, F

Analyses after 2005 Methane and Water on Mars

CSHELL slit position UT 20.73 March 2003

Wavenumber, cm⁻¹

mjm_080604.6

Analysis Changes Leading to Absolute Extractions (2005 Onward)

Pipeline Processing

From raw spectral-spatial frames to calibrated & registered frames Re-sample wavelength scale to milli - pixel accuracy (row-by-row) Use non-linear wavelength re-sampling (atmospheric emission) Remove second order fringing (Lomb periodogram analysis) Remove internal scattered light Correct residual dark current Correct residual terrestrial radiance

Science Analysis

Atmospheric transmittance -

Replaced SSP with GenIn2 v4 — and corrected pressure shift code Upgraded molecular atlas (now HITRAN '04 with '05 upgrade) Model synthetic spectra using variable resolving power along the slit

Analyses after 2005 Methane and Water on Mars

CSHELL slit position UT 20.73 March 2003 Northern late-summer $L_s = 155^{\circ}$

Both gases are enhanced towards the North

2003: Clear Detections of CH₄ R1 on Successive Days

2005: CO_2 (two lines) and CH_4 -P2 (two components) are detected

Mars was blue shifted -10.8 km/s

The non-mystery of the 'missing' R24 line of CO₂ on Mars

The non-mystery of the 'missing' R24 line of CO₂ on Mars

Additional Checks are Satisfied

A terrestrial artifact will always appear at the same rest position (wavenumber). The blue (red) arrow marks the expected position when Mars is blue (red) shifted. ' No strong residual line appears on the blue wing when Mars is red shifted.

Spectrum	L _s	Doppler, km s ⁻¹
'a'	17.2°	+ 17.1
'b, c'	121.9°	- 15.0
'd'	155.0°	- 15.6

Methane varies with latitude, longitude, and season. The maximum release moves southward with the Sun. Methane is nearly absent at vernal equinox (after Southern winter).

Mapping the Methane Plumes on Mars

Methane release: Northern summer

Seeing-limited Spatial Maps reveal local methane plumes on scales of 500 km. Is the release relatively uniform over these regions – or is it strongly localized?

Water and Methane Behave Differently on Mars !

Villanueva, Mumma, Novak, et al. (in prep)

Geologic signatures and current regions of release

NASA

Crustal remnant magnetic field*

Latitude

Longitude

Maximum CH₄ abundance observed in 2005

Maximum CH₄ abundance observed in 2003

* Magnetic field map after Connerney et al. 2005

Crustal remnant magnetic field*

* Magnetic field map after Connerney et al. 2005

Maximum CH₄ abundance observed in 2003 A & B

Search for Biomarker Gases: 2006 - 2010

Table 1

Observing log and mapping coordinates of the regions sampled on Mars.

Parameter	06 January 2006			19 August 2009	20 November 2009	28 April 2010
Instrument	CSHELL	NIRSPEC KL1	NIRSPEC KL2	CRIRES	CRIRES	NIRSPEC KL2
Time (UT)	05:24	08:39	06:03	10:15	08:26	06:25
	08:16	09:21	06:46	10:30	09:11	08:05
Integration time (mins)	60	24	20	6	40	80
Doppler shift (km s ⁻¹)	+15.5	+15.5	+15.5	-9.4	-13.8	+15.8
L _s , Mars Year	352°	352°	352°	324°	12°	83°
	MY27	MY27	MY27	MY29	MY30	MY30
Longitude (range)	45W	93W	55W	305W	92W	48W
	85W	100W	66W	315W	99W	67W
Latitude (range)	47N	49N	49N	62N	79N	68N
	78S	80S	80S	63S	45S	30S
Main region	Valles Marineris	East of Tharsis	East of Valles Marineris	Syrtis Major	East of Tharsis	Viking 1 West of Chryse

Table 2

Abundance limits (3- σ) of trace species on Mars in parts-per-billion (ppb, 10⁻⁹).

Molecule	Previous (3-σ, ppb)	06 January 2006 <i>L</i> s 352° MY27	19 August 2009 L _S 324° MY29	20 November 2009 L _S 12° MY30	28 April 2010 L _S 83° MY30
Methane (CH ₄)	3-50 ^a	<7.8	-	<6.6	<7.2
Ethane (C ₂ H ₆)	<0.2-0.6 ^b	<0.7	<0.6	<0.2	_
Methanol (CH ₃ OH)	-	<19	<21	<6.9	_
Formaldehyde (H ₂ CO)	<4.5°	<3.9	-	-	<3.9
Acetylene (C ₂ H ₂)	<3 ^d	<6	-	-	<4.2
Ethylene (C_2H_4)	<750 ^d	<11.2	<9	<4.1	_
Nitrous oxide (N ₂ O)	100 ^d	<87			<65
Ammonia (NH ₃)	<8 ^d	<57	-	-	<45
Hydrogen cyanide (HCN)	-	<4.5	-	-	<2.1
Methyl chloride (CH ₃ Cl)	-	<14.3	-	-	-
Hydrogen chloride (HCl)	<0.3 ^e	<2.1	<1.5	<0.6	-
Hydroperoxy radical (HO ₂)	-	<198	-	-	<255

^a Mumma et al. (2009), Krasnopolsky et al. (2004), and Formisano et al. (2005).

^b Villanueva et al. (2011) and Krasnopolsky (2012).

^c Krasnopolsky et al. (1997).

^d Maguire (1977).

e Hartogh et al. (2010).

Villanueva, Mumma, Novak, et al. Icarus 2013

Isotopologues of Water and CO₂ Measured with CRIRES-VLT

29 Jan 2014, $L_s = 83^{\circ}$ late Northern spring

Villanueva, Mumma, Novak, et al. Science 2015

Villanueva, Mumma, Novak, et al. Science 2015

Next:

Find & map locales of water release. Relation to RSL? D/H ratio in H₂O?

iSHELL at IRTF CRIRES+ at VLT NIRSPEC (upgraded)

HDO – ALMA H₂O – TMT, E-ELT?

ExoMars 2016 (TGO)

Trace Gases: CH₄, H₂O, HDO, H₂O₂, CO, O₂, O₃, etc.
3-D spatial: longitude, latitude, & vertical
1-D temporal: (diurnal, seasonal, & inter-annual)
High resolution (spectral & spatial)

Orbiters & Rovers MGS, MRO, Mars Express, Maven, *ExoMars 2016* Curiosity, *ExoMars 2018, Mars 2020* Ground-based Keck, NASA-IRTF, VLT ALMA, SOFIA

"ExoMars TGO – Tomorrow's Cutting Edge"

Previous ESA + NASA configuration — **ESA + Roscosmos configuration** \rightarrow NOMAD Atmospheric composition NOMAD Atmospheric composition $(CH_4, O_3, trace species, isotop)$ High resolution occultation $(CH_4, O_3, trace species, isotop)$ High resolution occultation dust, clouds, P&T profiles and nadir spectrometers and nadir spectrometers dust, clouds, P&T profiles SO Limb Nadir **UVIS** (0.20 – 0.65 μ m) $\lambda/\Delta\lambda \simeq 250$ **UVIS** (0.20 – 0.65 μ m) $\lambda/\Delta\lambda \simeq 250$ SO Limb Nadir **IR** (2.3 – 3.8 μ m) $\lambda/\Delta\lambda \simeq 10,000$ **IR** (2.3 – 3.8 μ m) $\lambda/\Delta\lambda \approx 10,000$ Limb Nadir SO Limb Nadir SO **IR** (2.3 – 4.3 μ m) $\lambda/\Delta\lambda \simeq 20,000$ **IR** (2.3 – 4.3 μ m) $\lambda/\Delta\lambda \simeq 20,000$ SO SO Vertical distribution of **CaSSIS** MATMOS 🐼 Mapping of sources; water, methane landing site selection High-resolution camera **High-Resolution FT spectrometer** and trace species Infrared (2.3 – 12 µm) $\lambda/\Delta\lambda \approx$ 130,000 SO Atmospheric chemistry, ACS aerosols, surface T, Suite of 3 high-resolution **EMCS** Monitoring of atmospheric structure spectrometers structure, water and aerosols Limb radiometer **Near IR** (0.7 – 1.7 um) $\lambda/\Delta\lambda \approx 20,000$ Limb Nadir SO **IR** (Fourier, 2 – 25 μ m) $\lambda/\Delta\lambda \sim$ 4000 (so)/500 (N) SO Nadir Monitoring of MAGIE clouds and ozone **Mid IR** (2.2 – 4.5 μ m) $\lambda/\Delta\lambda \simeq 50,000$ SO Wide-angle camera FREND Mapping of Hisci Mapping of sources; landing site selection subsurface water Collimated neutron detector High-resolution camera

"ExoMars TGO – Tomorrow's Cutting Edge"

Superior conjunction (This is when the Sun is between

Earth and Mars; Critical operations are paused.) Start of the data relay operations to support

communications for the rover mission

End of mission

11 July - 11 August 2017

17 January 2019

December 2022

Orbital Graphic Courtesy of Oleg Korablev

s

Oleg KORABLEV, Franck MONTMESSIN, Anna FEDOROVA, Nicolay IGNATIEV, Alexander TROKHIMOVSKY, Alexei GRIGORIEV, Alexei SHAKUN, Konstantin ANUFREICHIK

Atmospheric Chemistry Suite

ACS: Three Spectrometers

Cannes on June 4 2015

Adjustment: 3.39 µm HeNe

Sun calibration (terrestrial atmosphere; 3.7-4.0 µm)

SO/LNO Spectral Calibration

Courtesy: A-C Vandaele, BIRA (NOMAD Principal Investigator)

*e*iaps

- Analysis performed by Arnaud Mahieux:
 - Match absorption lines to gas spectra
 - Determine when AOTF peak is co-incident on each line
 - And pixel number vs wavenumber relation

Detection Limits methodology

Spectra are simulated considering

- Characteristics of the channel
- Abundances: reference value is multiplied by a series of factors covering the [100 – 0.001] interval:
 - 34 different values for all solar occultation ;
 - 50 for nadir-LNO ;
 - 16 for nadir-UVIS
- Noise was then added on all the simulated spectra. The noise level is directly related to the SNR values that were obtained in the first part of this study.
- □ Batch of spectra were produced :
 - 34*200 spectra in Solar Occultation (SO & LNO) per species
 - 16*200 spectra per species (UVIS, both geometries)
 - > 50*100 spectra in NADIR (LNO) per species

"ExoMars – NOMAD: Expected Sensitivity"

burtesy: A-C Vandaele, BIRA		SO	LNO		UVIS	
MAD Principal	Investigator)	Solar Occultation (SNR = 2000)	Solar Occultation (SNR = 3000)	Nadir (SNR = 100)	Solar Occultation (SNR = 500)	Nadir (SNR = 500)
CH₄	0-60 ppb ^a	25 ppt	20 ppt	11 ppb		(0.000)
H ₂ O	< 300 ppm (variable with season) ^b	0.2 ppb	0.15 ppb	31 ppb		
HDO	D/H =5.6 SMOW ^c	0.7 ppb	0.7 ppb	0.8 ppm		
СО	700 - 800 ppm ^d	5 ppb	4 ppb	1.5 ppm		
C ₂ H ₂	< 2 ppb ^g	0.03 ppb	0.03 ppb	20 ppb		
C ₂ H ₄	< 4 ppb ^g	0.2 ppb	0.15 ppb	70 ppb		
C ₂ H ₆	< 0.2 ppb ^e < 0.7 ppb ^g	0.03 ppb	0.02 ppb	11 ppb		
НСІ	< 3 ppb ^e < 0.2 ppb ^f < 0.6 ppb ^g	0.03 ppb	0.025 ppb	31 ppb		
HCN	< 5 ppb ^g	0.03 ppb	0.03 ppb	15 ppb		
HO ₂	0.1-6 ppb ^I < 200 ppb ^g	1 ppb	1 ppb	0.5 ppm		
H₂S	< 200 ppm ^h	4 ppb	3 ppb	1.6 ppm		
N ₂ O	< 100 ppb ^h < 90 ppb ^g	0.2 ppb	0.2 ppb	83 ppb		
NO ₂	< 10 ppb ^h	0.14 ppb	0.1 ppb	50 ppb		
OCS	< 10 ppb ^h	0.3 ppb	0.3 ppb	122 ppb		
O ₃		2.5 ppb	1.5 ppb	0.8 ppm	50 ppt	4.5 ppb
H ₂ CO	< 4.5 ppb ^e < 3.9 ppb ^g	0.04 ppb	0.03 ppb	16 ppb	7.5 ppb	150 ppb
NH ₃	< 5 ppb ^h < 60 ppb ^g				1 ppb	-
SO ₂	< 1 ppb ⁱ < 2 ppb ^{j,k}				0.5 ppb	18 ppb

"ExoMars TGO – Tomorrow's Cutting Edge"

ExoMars	2016 Missi	on Phases	Overview
---------	------------	-----------	----------

Launch Period	7-27 January 2016
EDM – Orbiter separation	16 October 2016
Orbiter insertion into Mars orbit	19 October 2016
EDM enters Martian atmosphere and lands on the target site	19 October 2016
EDM science operations	19 October - 23 October 2016 (to be confirmed)
Orbiter changes inclination to science orbit (74°)	25 October 2016
Apocentre reduction manoeuvres (from the initial 4-sol orbit to a 1-sol orbit)	27 October 2016
Aerobraking phase (Orbiter lowers its altitude)	4 November 2016 - mid 2017
Start operating the Orbiter scientific instruments	mid 2017
Superior conjunction (This is when the Sun is between Earth and Mars; Critical operations are paused.)	11 July - 11 August 2017
Start of the data relay operations to support communications for the rover mission	17 January 2019
End of mission	December 2022

The Critical Path for Extant Life – Follow the Methane

Firm up spatial variations - analyze additional maps, acquire additional data. Influence landing site selection

Examine dependence on season, time-of-day, correlation with local water, etc.

Identify all local sources, characterize as bio- or geo-driven solar occultation (e.g., ExoMars Trace Gas Orbiter) laser absorption LMO (methane isotopologues)

Deploy High-resolution Spectral Mapper at Mars – Sun L1 (Organic Observer) Identify & map optimum sites at high spatial & spectral resolution All of Mars, all of the time!

Conduct *in situ* studies at most favorable sites: Astrobiology Field Laboratories

Return critically selected samples to Earth

End