



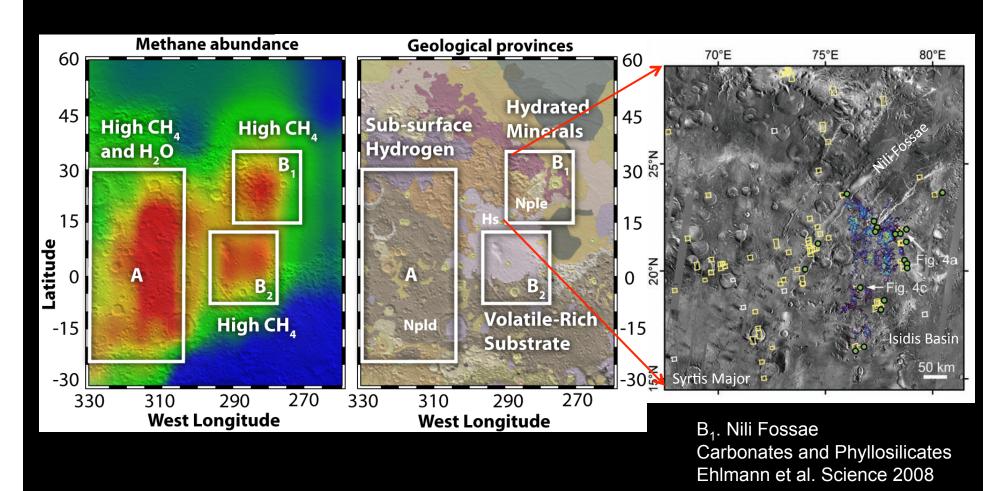

60S

90S

#### The Science Driver: Active Release of Methane



180 150 120 90 60 30 0 330 300 270 240 210 Mumma, Villanueva, Novak, et al. Science 2009 **West longitude** 


180

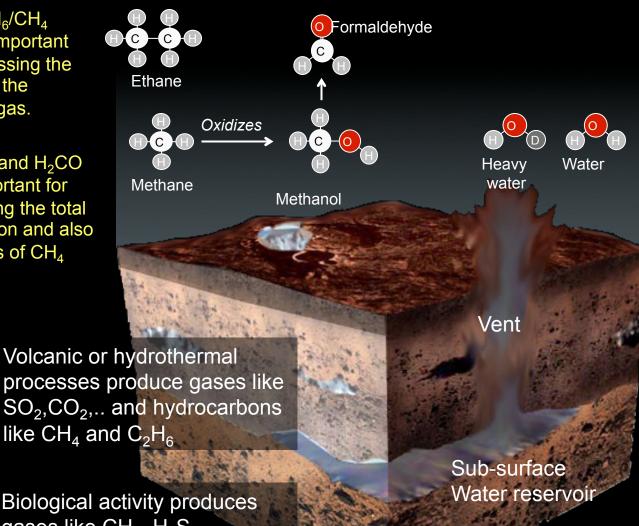


#### The Science Driver: Active Release of Methane

High resolution spatial maps reveal local methane plumes

A. Ancient Hydrated Terrain B<sub>1</sub>. Nili Fossae B<sub>2</sub>. Syrtis major volcano, S.E. Quadrant




Mumma, Villanueva, Novak, et al. Science 2009



### **Mars Organic Observer: Science Objectives**

The C<sub>2</sub>H<sub>6</sub>/CH<sub>4</sub> ratio is important for assessing the origin of the sensed gas.

CH<sub>3</sub>OH and H<sub>2</sub>CO are important for identifying the total production and also the sinks of CH<sub>4</sub>



Atmosphere:  $(HDO/H<sub>2</sub>O)<sub>FR</sub> \sim 5$ because of preferential loss of the lighter isotope

The HDO/H<sub>2</sub>O ratio reveals the loss of water from Mars and the age of the sensed gas.

Cryosphere:  $(HDO/H_2O)_{ER} < 2 ???$ representative of a more primordial chemistry



Biological activity produces gases like CH<sub>4</sub>, H<sub>2</sub>S ...



### **MOO: Science Objectives**

#### Map organic source and sink regions

- Establish sources of methane, water, and related species
- CH<sub>4</sub>: 0.1 ppb (3-sigma), 100x100 km resolution, global coverage deeper integrations in selected regions (isotopes; super-resolution)
   12 x 12 km resolution on surface (sub-spacecraft region)
- Evaluate sinks (surface, heterogeneous chemistry, etc.)
- Measure dependence on surface temperature (season, time-of-day)
   Repeat at intervals of Mars month

#### Test factors affecting methane origin and destruction

- Age of water reservoir accessed: (D/H ratios in methane and water)
- Destruction mechanisms (spatial distributions CH<sub>4</sub>, CH<sub>3</sub>OH, H<sub>2</sub>CO)
   Biotic vs. abiotic production (homologous series: CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, ...)

#### Characterize the Climate and Geology of Mars

Study circulation patterns on Mars; the water cycle; HDO/H<sub>2</sub>O, etc.

Characterize Mars' present climate and climate processes.

Characterize Mars' ancient climate.

Test presence of active geothermal processes.

Characterize the structure, dynamics, and history of the planet's interior.

#### Mission Duration: 3 Earth-years required, 5 years goal

- Two full Mars years goal
- Provide long dwell-time over specific sites
- Provide simultaneous images (local conditions, climatology) M. J. Mumma 10dec2015



#### Other Issues: MOO & MSO-Lite

MSO vs. MOO?

or

MSO and MOO

Fact: Mars program is morphing towards a landed mission to an active vent of established biogenic potential. It is critical to accurately locate this vent.

)



#### Other Issues: MOO & MSO-Lite

MSO vs. MOO?

or

MSO and MOO

Fact: Mars program is morphing towards a landed mission to an active vent of established biogenic potential. It is critical to accurately locate this vent.

MSO: Low Mars orbit

Science capability: Solar occultation high res IR spectrometer

Trace gas analysis, abundance & isotopic = Very Good

vertical profiles (Good, but sparse coverage)

Active vent properties (nature & location) = Very Poor!

Telecom capability, range (few 100 km), LOS time (Short)

MOO: Mars-Sun L1

Science capability:

Trace gas analysis, abundance & isotopic = Very Good

Active vent properties (nature & location) = Excellent

vertical profiles (modest, but global coverage every day)

Telecom capability, range (1.4E6 km), LOS time (Long – 12 hours every day)



#### Other Issues: MOO & MSO-Lite

MSO vs. MOO?

or

MSO and MOO

Fact: Mars program is morphing towards a landed mission to an active vent of established biogenic potential. It is critical to accurately locate such vents.

MSO: Low Mars orbit

Science capability: Solar occultation high res IR spectrometer

Trace gas analysis, abundance & isotopic = Very Good

vertical profiles (Good, but sparse coverage)

Active vent properties (nature & location) = Very Poor!

Telecom capability, range (few 100 km), LOS time (Short)

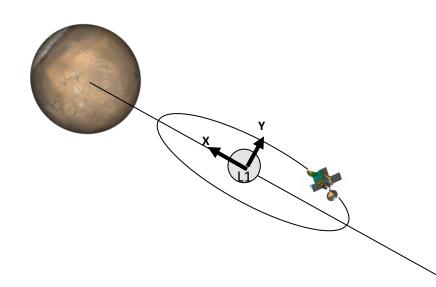
• MOO: Mars-Sun L1

Science capability:

Trace gas analysis, abundance & isotopic = Very Good

Active vent properties (nature & location) = Excellent

vertical profiles (modest, but global coverage every day)


Telecom capability, range (1.4E6 km), LOS time (Long – 12 hours every day)

MSO and MOO: The data polygon permits identifying all active vents, their seasonal behavior, annual repeats, and whether bio- or geo- active.



## **L1 Observatory - Orbit Concept**

# Looking Down on Mars Ecliptic and L1 Orbit Planes

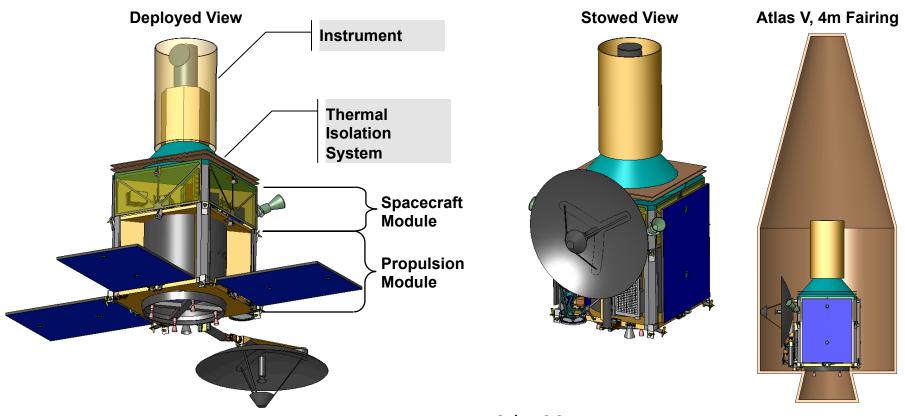


L1 Distance to Mars  $1.075 +/- .1 \times 10^6$ 

Angle between Nadir and Sub-solar point 0.085 to 0.125 deg

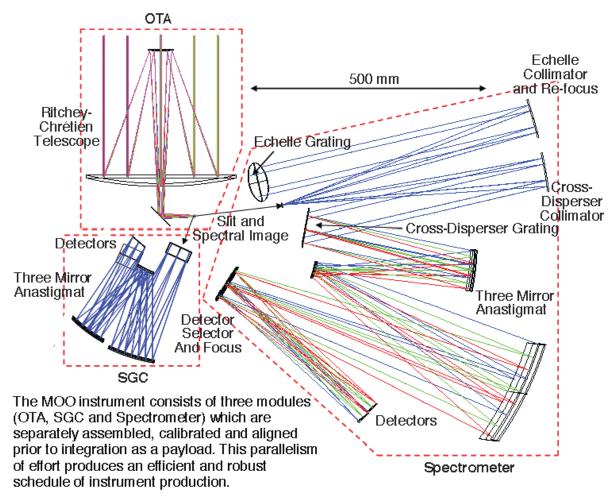
L1 Orbit

$$X = +/-60x10^3 \text{ km}$$


$$Y = +/- 20x10^3 \text{ km}$$





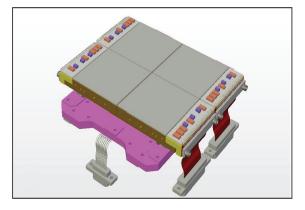

## **MOO Spacecraft Concept**

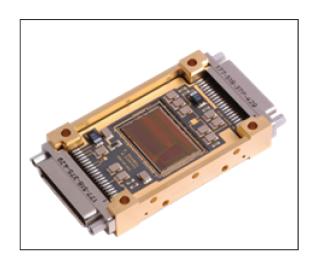
- MOO spacecraft based on Deep Impact and Kepler Architecture
- Provide thermal isolation for instrument
- Stable and accurate pointing using camera in instrument





### **OTA – SGC – Spectrometer Ray-trace**

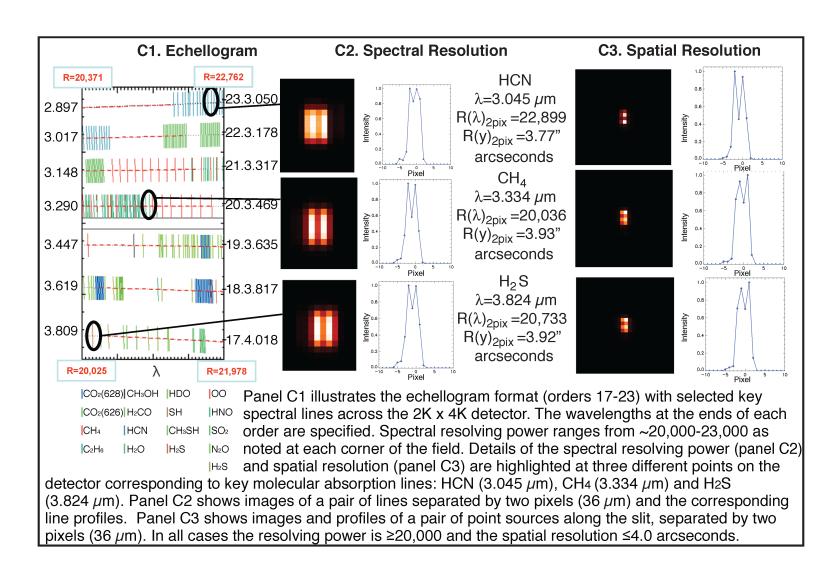




Light collected by the OTA is directed onto the reflecting slit plate  $(0.8^{\circ} \times 0.8^{\circ} \text{ field})$  which splits and redirects the field. Light transmitted through the slit  $(2 \times 720 \text{ arcseconds})$  enters the spectrograph, is dispersed, relayed and recorded. Light surrounding the slit is reflected to the SGC allowing for accurate determination of slit location, for fine guiding and scientific imagery.



### **MOO – JWST Detectors & ASIC**



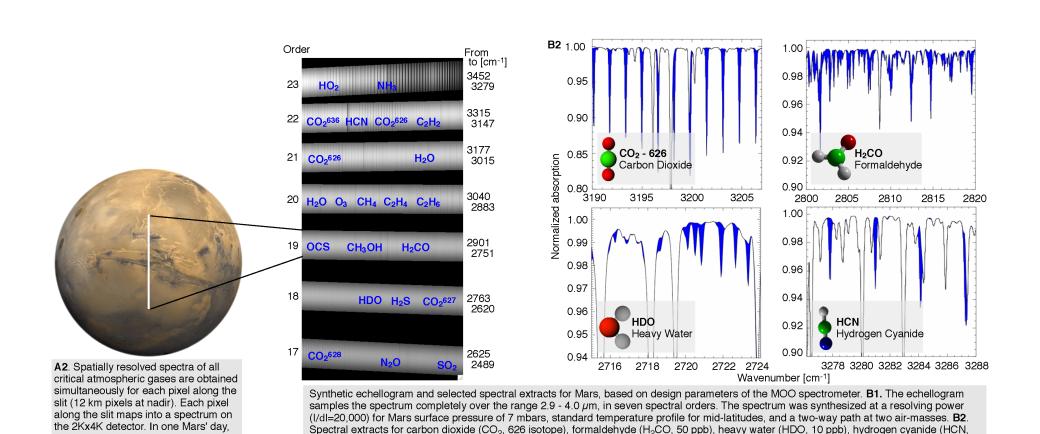





A Hawaii 2RG format HgCdTe array of 2048<sup>2</sup> pixels (top, left). Four such arrays (butt-coupled) for MOO comprise primary (2K x 4K) and backup (2K x 4K) detector arrays, and one of the four SIDECAR ASICs (bottom, left). In 2006, arrays and ASICs were both TRL6. In 2015, both are TRL9.

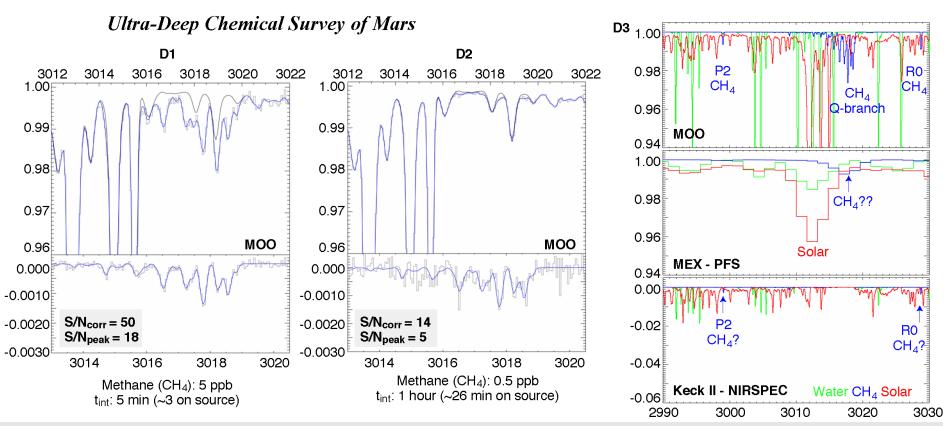


# **MOO – Echellogram Format**






50% of the planet can be mapped.


50 ppb).

### **MOO – Simultaneous Detections**





### **MOO – Sensitive Search for Methane**



Sensitivity Estimates for Spectroscopic detection of Methane on Mars. **D1.** In the Rapid Planet survey, spectral lines in the Q-branch region are detected with high confidence in five minutes clock time, representing a 96 km x 96 km footprint (nadir) on Mars. **D2.** In the Deep Survey mode, 12 maps taken as in D1 are co-added, improving the S/N by 3.5. At 0.5 ppb, methane would be detected at the 14-sigma level (correlation mode). **D3.** The spectrum of sunlight reflected from Mars shows solar lines along with lines of H<sub>2</sub>O and CH<sub>4</sub> in the Mars atmosphere. The spectrum is shown convolved to the resolving powers of 20,000 (MOO), 1500 (MEX-PFS), and 24,000 (Keck-NIRSPEC). The significant limitation of the PFS data is demonstrated, strongly putting into question their claimed detection of methane. All ground-based searches (e.g., Keck) are severely restricted by terrestrial extinction. With a resolving power of 20,000 MOO will separate these lines cleanly and will return clear detections of methane and other targeted species.



# **MOO 'Comparisons'**



#### **Mars Organic Observer**

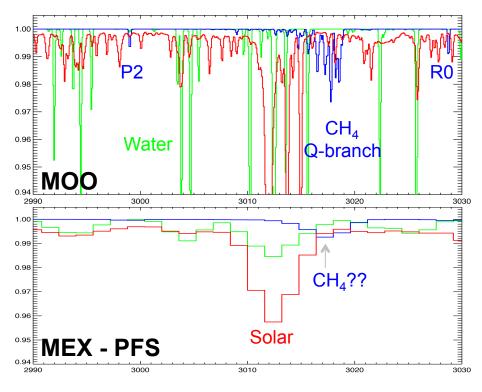
Cross-Dispersed Echelle Spectrometer Minimum Resolving power: 20,000 Global coverage in 49 hours

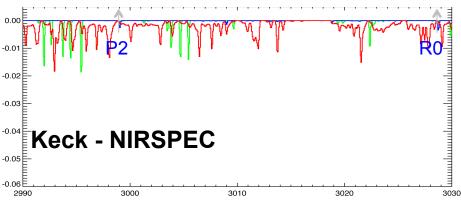
National Aeronautics and Space Administration



Mars Express Spacecraft
Planetary Fourier Spectrometer (PFS)
Maximum Resolving power: 1,500
Limited coverage because of orbit

**European Space Agency** 





#### W.M. Keck Observatory

The world's largest infrared telescope NIRSPEC Echelle Spectrometer Maximum Resolving power: 25,000 Affected by atmospheric extinction



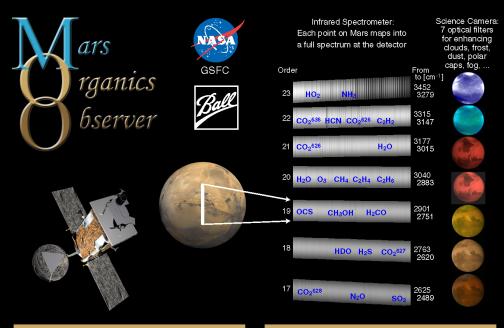
Caltech, UC and NASA







## **MOO Mission Concept**


- Mission Life: 3 years required, 5 years goal
- Target Launch date: 2016
- Orbit: Mars L1 Lissajous 100,000 x 60,000 km
- Launch Vehicle Delta II 2925H (goal) Atlas V (if necessary)
- Observatory Best Estimate Requirements (includes allocated reserves)
  - − Dry Mass: ~640 kg
  - Power: ~511watts
  - Station keeping and momentum cold gas: 30 kg
  - Data collection rate, up to 6 Gbit/day (max)
  - Downlink rate: DSN compatible Time of year dependent
  - Pointing knowledge (planet referenced): 0.35 arcsec
  - 30 cm telescope, < 120K optics, 70K focal plane

#### Operations Concept

- Telescope bore site always within 10 deg of the spacecraft to sun vector
- Observing strategy set by Mission Science Center
- Tactical execution by Mission Operations Center with engineering considerations
  - Sun avoidance
  - Momentum management
  - Power management
  - Ground contacts



# MOO Fact Sheet 1 Mars Scout 2006



#### **Mission Overview**

- Mission objective: Conduct a continuous spectroscopic and imaging survey of Mars over an extended period emphasizing the search for life and the climatology of Mars
- Mission duration: In-orbit 3+ Earth years
- Orbit: Mars L1 Lissajous
- Launch vehicle: Atlas 401 or equivalent
- Launch date: November 2011
- L1 arrival date: January 2013
- Low risk: No advanced technology development (all > TRL 6), low ΔV requirements for a Mars mission, no aerobraking, no landing

#### **Mission Team**

- PI is Dr. Michael Mumma, GSFC
- Science Team from GSFC, Cal. Tech., Indiana Univ., Iona Coll., ORAU, Princeton Univ., Sp. Sci. Inst., Univ. Toronto, Univ. Washington
- GSFC is responsible for overall mission management, system engineering, mission assurance, payload, observatory integration, mission operations, and science team management
- Ball Aerospace is responsible for the Spacecraft and Science and Guidance Camera

#### **Science Objectives**

#### MOO will:

- Address all 4 Mars Exploration Program's science themes
- Establish sources of methane, water, and related species
- Test biotic vs. abiotic production (homologous series: CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, etc.)
- Study circulation patterns on Mars; the water cycle; HDO/H<sub>2</sub>O, etc.
- Test presence of active geothermal processes
- Identify active vents as key targets for human exploration (in-depth biostudies; resources)



# End