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The occurrence of CH4 in the Martian atmosphere may imply active geologic sources,
l.e. gas emission structures in the Martian soil and subsaoill

= gas seepaqge, a process well known on Earth, should exist on Mars.




The concept of “gas seepage” on Mars

How does seepage concept translate to the Mars context?
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Icarus 224 (2013) 276-285

Low temperature production and exhalation of methane from serpentinized
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Outcomes of the 15t workshop

Gas seepage introduced: - basic concepts and observational data on Earth
- potential seepage on Mars

Gas seepage on Mars:

- can be evidenced by specific surface manifestations (macro-seepage structures)
over faults and fractured rocks, as observed on Earth (circular depressions, polygonal
fractures, mounds, mud volcanoes).

- can be in the form of invisible diffuse exhalation from the ground (microseepage)

- can be detected only through specific procedures/methods: measurements in the
atmosphere, a few cm above the ground (as performed by Curiosity) may not be
effective in revealing any seepage (trivial CH4 recorded by Curiosity cannot be accepted
as evidence of lack of subsoil processes generating methane)

- surface gas geochemical techniques, similar to those that allowed the discovery of
seepage and subsoil hydrocarbon reservoirs on Earth, must be considered
(soil-gas, accumulation chambers, surface mineralogical alterations).

Take home message
Geologic CH, on Mars should be searched, preferably above or near faults or at apparent
mud volcanoes, in the regions with olivine bearing or sedimentary rocks, ideally by drilling
into the soil, or using accumulation chambers on the ground



Objectives of the 2"d workshop

More detailed discussions on.....

1. Macro and microseepage on Earth
typical soil-gas concentrations and flux values,

detection methods, indirect methods (soil-gas, closed-chamber, drilling, instrumental
requirements. What can be applied on Mars?)

Potential seepage structures and manifestations on Mars
recognition by high-resolution images (e.g. HiRISE, CaSSIS, land-based cameras)

3. Seepage proxies: carbonate cement, secondary alterations of minerals

4. Meaning of methane/ethane ratio in seeping gas

review of methane genetic mechanisms; post-genetic alterations during seepage,
meaning (and ambiguity) of C1/C2 ratio (expected to be measured by ExoMars 2016)

Proposed deliverable

- Report in a format suitable for submission to a peer-reviewed journal
- Integration with the overall results of the workshop, for a comprehensive paper (e.g., EOS)

We can propose the search for gas seepage as one of the guiding scientific goals
for Mars exploration in the 2020’s.



What is gas seepage

visible or invisible, focused or diffuse over large areas
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Gas seeps and “eternal” fires

Release from 1 to 1000 ton CH4 per year




Mud volcanoes

Release from 1 to 500 ton CH4 per year
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MICROSEEPAGE IN OLIVINE-RICH ROCKS
(PERIDOTITES)

from 1 to 103 mg m2 day-’
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Geological emissions in the global
CH4 budget
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How to detect and measure gas seepage

Effective only for
significant seepage

Effective also for
very low seepage
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Shallow drilling
into the soil

soil-gas probes

Sampling gas in soil-air at
depths of 50-100 cm
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CLOSED-CHAMBER SYSTEM
for microseepage




Widely used for soil-respiration, gas fluxes
from wetlands, rice paddies and permafrost.

Gas flux Q is expressed in terms of mg m=2 day-' by the

Ve (m3) chamber volume
Arc (m?) chamber area
c, - C, (mg/m3) methane concentrations at times t, - t, (days).




First applications in geology

Prof. Ronald
Klusman

US Colorado
School of Mines

Klusman et al 2000. J. Geoph. Res. 105D, 24,661-24,670
Klusman et al 2000. Geothermics 29, 637-670
Klusman 2003. Applied Geochem., 18, 1825-1838.
Klusman 2006. Applied Geochem., 21, 1498-1521.
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INSIGHT mission (2018, NASA)
landing site: Elysium Planitia

SEIS seismometer

A similar arm could be used for positioning a
closed-chamber

HP3 (Heat Flow and Physical Properties Probe)

CONNECTING A GAS SENSOR TO THESE
PROBES WOULD BE A GREAT
OPPORTUNITY TO RELIABLY DETECT
METHANE SEEPAGE

Can KISS support the development
of such a concept and technology?

(prototype design, development, involvement
of robotics companies)



POTENTIAL SEEPAGE ON
MARS

where on Mars are the best chances of finding methane?

Analog seepagqe sites

faulted/fractured ultramafic/serpentinized rocks
faulted/fractured sedimentary basins (mud volcanoes, mounds)



Olivine-rich and serpentinized areas on Mars

Serpentine occurs in Mars’ ancient Noachian terrains, Nili Fossae, Syrtis Major, Claritas Rise

Global olivine distribution (Ody et al. 2012; 2013)
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FAULTS

PSP DO28Y8 188

Arabia Terra
(Etiope et al. 2011)

Fault at Nili Fossae, from
PSP_006923 1995 (19.381N, 76.421E)
Wray and Ehlmann (2011)



Potential mud volcano-like seeps

Candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, Chryse—

Acidalia region (Davis and Tanaka, 1995; Tanaka, 1997, 2005; Tanaka et al., 2000, 2003, 2008; Farrand
et al., 2005; Kite et al., 2007; Rodriguez et al., 2007; Skinner and Tanaka, 2007; Allen et al., 2009; Oehler

and Allen, 2009; Skinner and Mazzini, 2009; McGowan, 2009; McGowan and McGill, 2010)

>40000 estimated

(18000 mapped)
in Acidalia Planitia ey .
(Oehler and Allen, 2010 FESE =~ =\ V*R&ain"” @
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Potential mud volcano-like seeps Acidalia Planitia
(Oehler and Allen, 2010; Etiope, Oehler, Allen 2011)
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INTERPRETING MOLECULAR
COMPOSITION OF GAS

THE MEANING OF METHANE/ETHANE
RATIOS

(expected to be measured in the ExoMars 2016 mission)

is it a reliable indicator of gas origin?



It is generally assumed that C1/C2 is a good indicator of methane origin,
microbial (C1/C2 > 1000) or thermogenic or abiotic (C1/C2 <1000)

But this is true only if gas is sampled/detected at the point of its origin
(on Mars we may only detect seeping gas)
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Gas migration from reservoir to surface seeps:
Loss of C2+ hydrocarbons due to molecular fractionation
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ABIOTIC GAS
seeps (continental serpentinization sites)
VS
deep boreholes (Precambrian shields)
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OTHER EXAMPLES OF ABIOTIC and GEOTHERMAL GAS

McCollom & Seewald (2007)
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Figure 19. Carbon isotopic composition of methane and C,/Cz+
ratios for votatile hydrocarbons in high-temperature fluids from mid-
ocean ridge hydrothermal systems. Shown in gray is the range of
values observed for typical microbial and thermogenic hydrocarbon
gases. Also shown for comparison are values for gases proposed
to have an abiotic origin in Precambrian shietd rocks, igneous rocks,
and gases venting from a continental serpentinite {Zambales
ophiolite). The fields marked “H & B” are abiotic methane
generated in hydrothermal experiments of Horita and Berndt*? (Ci/
C,4+ values are minimums because Cy4 compounds were below
detection limits). & represent hydrocarbons formed in Fischer—
Tropsch synthesis experiments.?>>% Adapted with permission from
ref 43. Copynright 1999 AAAS (http://www.aaas.org).
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Molecular fractionation inversely proportional to gas flux
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Therefore.....

1. If both methane and ethane will be detected, then it is likely that gas is abiotic, but we shall
assume that

(a) there are not ethanogens on Mars (ethane-producing microbes exist on Earth)

(b) there is no ancient organic matter in deep sedimentary rocks that could be degraded by
temperature (i.e. the possibility for thermogenic gas shall be excluded, and we shall explain why)

2. if ethane will not be detected, then we may hypothesize

(a) microbial gas
(b) abiotic gas molecularly fractionated
(c) abiotic gas generated at very low T (no enough energy for polymerization of CH, molecules to form C,,)

In any case, we will have a certain degree of uncertainty on the origin.

However, detecting ethane would make the interpretation a bit easier (probable abiotic gas);
considering the geological framework and the features of the sampled site (mud volcano,
sedimentary basin, basalt and serpentines..etc..) could help.



INTERPRETING ISOTOPIC
COMPOSITION OF GAS

The meaning of §'>*C-CH4 and 6?°H-CHa4
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Potential C—H isotopic signatures of CH4 on Mars

Martian C feedstock: - atmospheric fractionated CO2 (8'3C: +46 %o; Webster et al 2013)
- atmospheric unfractionated CO, (6'3C -20%o to 0%o; Niles et al., 2010)
- magmatic CO, (Zagami meteorites, §'3C: -10 to -20%o)

8'3C-CH, can be similar to that observed on Earth only if it derives from
unfractionated or magmatic CO2

. _ extrem. enriched in deuterium &2H up to +4000%
@tlan H feedstock: - atmospheric H, } g ”

Leshin, 2000; Sugiura and Hoshino, 2000
- H in minerals (meteorites)] due to atmospheric escape fractionation processes

- subsurface waters ?7?7?
- magma: low 82H; initial 82H similar to Earth; Boctor et al., 2003; Lunine et al., 2003

- igneous rocks: olivine, 8%H: -60 to -280 %o Gillet et al. 2002

A wide range of ?°H could be measured for martian CH,, far outside terrestrial variations

Martian 62H—CHa4 values could be within the terrestrial range if the precursor hydrogen derives
from primordial, unfractionated, magmatic gas or is similar to that of martian olivine.




Conceptual summary for seepage on Mars
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