GAS SEEPAGE ON EARTH

Experience with microseepage measurements, flux detection and indirect indicators

Ronald W. Klusman

Emeritus Professor

Chemistry and Geochemistry

Colorado School of Mines

rwklusman@earthlink.net

Klusman, 1993

Etiope, 2015

What is gas seepage

microseepage

Importance of gas seepage on Earth

How to detect and measure gas seepage

Effective only for significant seepage

Effective also for very low seepage

approach to be adopted for Mars

Etiope (2015)

<u>Indirect</u> Methods for Detection of Gas Seepage (Modified from Etiope, 2015, Figure 4.5)

Typical methane fluxes from seepage on Earth

Gas seeps $0.1 - 100 \text{ ton/year } (10^3 \text{ ton/year in large seeps})$

Mud volcanoes mean 3100 ton km⁻² y⁻¹

Etiope et al (2011)

Microseepage

by definition >0 mg m⁻² day⁻¹

Methanotrophy

"negative" (downward flux) drawing CH4 from atm.

Etiope and Klusman (2010)

IMPROVEMENTS NEEDED FOR MONITORING, VERIFICATION AND ACCOUNTING (MVA) FOR APPLICATION IN CARBON CAPTURE AND GEOLOGIC STORAGE OF CO2

- Full seasonality needed in gas flux and soil gas measurements,
- Improved IR-based measurement of CO₂ in the 300-1000 ppmv range,
- More isotopic measurements of both CO₂ and CH₄ for evaluation of the role of methanotrophy,
- Focus measurements on faults and potential role as conduits for buoyant fluids,
- Seasonality, isotopic measurements, and faults as conduits will be particularly important on Mars. Large declining barometric gradients will draw gases upward.

Rangely CH4 Flux

Summer, 2001

Rangely CH4 Flux

Winter 2001/02

Note that some negative fluxes still occur in winter

Rangely 100 cm soil gas CH4

Summer 2001

Rangely 100 cm soil gas CH4

Winter 2001/02

SELECTION OF "INTERESTING" LOCATIONS FOR 10-M HOLES

- Magnitude and direction of both CO₂ and CH₄ fluxes,
- Magnitude <u>and</u> gradient of <u>both</u> CO₂ and CH₄ concentrations in soil gas profiles,
- Isotopic shift in 60-, and 100 cm soil gas CO₂ relative to atmospheric CO₂,
- Selected locations with microseepage evident, and with microseepage absent; soil gas contributes more to the selection process than fluxes; shallow concentration gradients will be useful on Mars.

Depth

MODELING INTERVALS FOR "DEEP" (10-meter) HOLES

Rangley Measured and Modeled CH₄ Profile for 10-m Hole 01; Diffusion Only

Summer, 2002

Winter, 2001/02

Rangely Measured and Modeled CH4 Profile for 10-m Hole 01
Diffusion and Methanotrophic Oxidation

Summer, 2001

Winter, 2001/02

First-order Degradation (Methanotrophy) Rate Constants for CH₄; "Deep" Hole 01

Rangely Measured and Modeled CH4 for 10-m Hole 28; Diffusion and Methanotrophic Oxidation

Summer, 2001

Winter, 2001/02

Note sub-atmospheric concentration of CH4. A lower limit for methanotrophy not observed.

Isotopic shift in δ¹³C of CH₄ in anomalous 10-m Hole 03 at Rangely;
Reservoir = -40.71%

Summer, 2002

Winter, 2001/02

Isotopic shift in δ^{13} C of CH₄ in non-anomalous 10-m
Hole 34 at Rangely
Reservoir = -40.71%

Summer, 2002

Winter, 2001/02

ESTIMATION OF CH₄ MICROSEEPAGE INTO THE ATMOSPHERE AT RANGELY (a start on Accounting)

- The gross CH₄ microseepage into the atmosphere over 78 km² is 700±1200 tonnes year⁻¹ using the winter rate*
- The net CH₄ microseepage into the atmosphere is 400 metric tonnes year⁻¹
 ±?, subtracting the control area from the on-field data.
- *non-parametric estimated rate is positive with $\alpha = 0.015$.

TEAPOT DOME – LIGHT HYDROCARBONS IN ANOMALOUS 10-m HOLE 17; JANUARY, 2005

TEAPOT DOME – LIGHT HYDROCARBONS IN NON-ANOM.10-m HOLE 02; JANUARY, 2005

Generic δ¹³C of CH₄ vs. In(1/CH₄) Diagram

TEAPOT DOME – 10-m HOLES JANUARY, 2005

Teapot Dome – Winter, 2005 10-m Holes

Teapot Dome - Section 10 Soil Gas Survey

Teapot Dome - Section 10 Survey Area

INDIRECT INDICATORS OF GAS SEEPAGE

(from Klusman, 1993, Chapter 7) Applicability to Mars

- Yes Satellite imagery Linear and circular features, topographic highs, color shifts indicative of alteration
- Yes Secondary carbonate and sulphate minerals
- Yes δ^{13} C and δ^{18} O of cements and vein materials
- Yes Electrical resistivity of shallow subsurface
- Yes Horizontal gradient magnetic intensity indicative of iron reduction producing magnetite and sulphides
- Yes Radiometric redox processes inhibiting migration of uranium and potassium-40 in near-surface
- Yes Gradients in temperature with depth Heat flow related to mass flow because of poor thermal conductivity of rocks
- Selected trace elements in soils iodine, strontium, ratioed to iron as indicators of redox conditions

INDIRECT INDICATORS OF GAS SEEPAGE Applicability to Mars

- ? Gradients in inert gases with depth variable results because of high mobility of helium, high concentrations of neon and argon in the Earth atmosphere overwhelming a signal from depth
- **?** UV fluorescence of organics extracted from soil indicative of multi-ring structures
- No Geobotany and biogeochemistry Natural selection processes indicative of unusual soil chemistry
- No Satellite radar detection of oil film on sea surface
- No Microbiological Specific organisms tolerant of alcohols produced by stepwise oxidation
- No Ground radar indicative of polar molecules; water vapor as a "carrier gas."

Oil Production in Tom Green County, Texas (from Foote, 1986)

Horizontal Gradient Magnetometer Survey in Tom Green County, Texas (from Foote, 1986)

Magnetic Anomalies over Marsh Creek Anticline in Arctic National Wildlife Refuge, Alaska (from Donovan et al., 1984)

Isotopic Shift of Carbonate Cement Above Seepage at Davenport Field, OK (from Donovan et al., 1979) ≈ 210 shallow dolomite cement samples on a grid

δ¹³ C of (Ca,Mg)(CO₃)₂

δ^{18} O of (Ca, Mg)(CO₃)₂

In-fill Drilling by
December, 1981
Superimposed
Over 1974 Gamma
Radiation Survey
at Heldt Draw Oil
Field, Powder
River, WY (from
Curry, 1984)

A FEW MARTIAN SEEPS or WEAK MICROSEEPAGE CAN SUSTAIN THE ATMOSPHERIC CH4 LEVEL (and the Mumma's plume)

equivalent to a diffuse microseepage of ~10-100 mg m⁻²d⁻¹ from an area of 500 to 5000 km²

If the whole 30000 km² olivine outcrop at the Nili Fossae (Hoefen et al., 2003) is assumed to exhale, a microseepage of 2 mg m⁻²d⁻¹ (the lowest level detected in terrestrial peridotites) would be sufficient to support the plume

If a global Martian CH₄ source of around 100-300 t yr⁻¹ is required to maintain the 10 ppb atmospheric level (Atreya et al, 2007), one large mud volcano or a few small mud volcanoes, or just a very weak microseepage, sparse in different zones of Mars, would be sufficient.

Etiope, Oehler, Allen (2011) Etiope, Ehlmann, Schoell (2013)

SPECULATIONS ABOUT EXPERIMENTS ON MARS

- Slim coring device needed on rover
- Locations for coring visually selected based on surface geology
- Cores drilled to practical depth and inserted into incubation chamber that can subsequently be sealed and warmed to slightly above freezing
- Spike chamber with minor hydrogen and trace of water, CO2 indigenous in atmosphere
- Monitor pressure and atmospheric composition and isotopy daily with TLS; two weeks enough(?); can be done while traveling, DETECTION OF METHANOGENESIS (?)
- Pressure can detect adsorption/desorption and/or leakage
- Purge gas from chamber, spike chamber with minor oxygen and a trace of water, methane, CO2 indigenous in atmosphere
- Monitor pressure and atmospheric composition and isotopy; two weeks enough(?); can be done while moving, DETECTION OF METHANOTROPHY (?)
- Expel core from chamber; drill next core.

Main final messages

Observations of terrestrial gas seepage can be used to infer forms and magnitude of potential seepage on Mars, and perhaps where to look

Seasonality on Earth is important

Low microseepage, sparse in different zones of Mars, would be sufficient to sustain methane observed in the atmosphere

BUT, as on Earth, CH4 microseeping on Mars cannot be detected a few cm above the soil, because of winds and dilution of the leaking gas

Recommendation

Geologic CH4 on Mars should be searched preferably above or near faults or at apparent mud volcanoes, by drilling into the soil or using accumulation chambers on the ground

DETECTION OF MICROSEEPAGE

ACKNOWLEDGEMENTS

- Early CH4 Flux National Science Foundation;
 Atmospheric Chemistry Program.

 Geothermal U.S. Dept of Energy U. Utah, EGI;
 Rangely U.S. Dept. of Energy, Basic Energy
 Sciences for funding;
 - Chevron Production USA for access to confidential reservoir characterization documents, reservoir water quality data, reservoir pressure data, and backhoe for soil profile characterization in trenches.
- Teapot Dome Rocky Mountain Oilfield Testing Center (RMOTC) for funding;
 - Naval Petroleum Reserve No. 3 (NPR3) for field access and data, backhoe for soil profile characterization and fault trenching.