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What is gas seepage
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Importance of gas seepage on Earth
Hydrocarbon emission to the atmosphere
(greenhouse-gas, photochemical pollutants and climate changes)
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How to detect and measure gas seepage

Effective only for Effective also for
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Indirect Methods for Detection of Gas Seepage

(Modified from Etiope , 2015, Figure 4.5)

Carbonate
precipitation

Chemical- / Metal

mineralogic _ 'eaching
Spaceborne, / \Clay-mineral

airborne, optical changes
remote sensing

~ " Geobotanical

Ground based Microbiologic

Radiometric
Airborne
Electromagnetic
Geophysical — Magnetic
Seismic
Underwater

|
\ Hydro-acoustic



Typical methane fluxes from seepage on Earth
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Three chambers 10-m apart
in basin CH, flux study

Lyn Jakel - Powder
River basin, WY - 1994

Soil gas probe
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IMPROVEMENTS NEEDED FOR MONITORING,
VERIFICATION AND ACCOUNTING (MVA)
FOR APPLICATION IN CARBON CAPTURE

AND GEOLOGIC STORAGE OF CO2

e Full seasonality needed in gas flux and soil gas
measurements,

e Improved IR-based measurement of CO2 in the
300-1000 ppmv range,

e More isotopic measurements of both CO2 and CH4
for evaluation of the role of methanotrophy,

e Focus measurements on faults and potential
role as conduits for buoyant fluids,

e Seasonality, isotopic measurements, and faults
as conduits will be particularly important on
Mars. Large declining barometric gradients will
draw gases upward.
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Rangely 100 cm soil gas CH4

Summer 2001
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SELECTION OF “INTERESTING”
LOCATIONS FOR 10-M HOLES

- Magnitude and direction of both CO,
and CH, fluxes,

Magnitude and gradient of both CO, and
CH, concentrations in soil gas profiles,

Isotopic shift in 60-, and 100 cm soil
gas CO, relative to atmospheric CO.,

Selected locations with microseepage
evident, and with microseepage absent;
soil gas contributes more to the
selection process than fluxes; shallow
concentration gradients will be useful
on Mars.
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MODELING INTERVALS FOR “DEEP” (10-meter)

HOLES
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First-order Degradation (Methanotrophy) Rate
Constants for CH,; “Deep” Hole 01
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Rangely Measured and
Modeled CH4 for 10-m
Hole 28; Diffusion and
Methanotrophic
Oxidation
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ESTIMATION OF CH,; MICROSEEPAGE
INTO THE ATMOSPHERE AT RANGELY
(a start on Accounting)

- The gross CH, microseepage into the
atmosphere over 78 km? is 7001200
tonnes year! using the winter rate*

The net CH, microseepage into the
atmosphere is 400 metric tonnes year’
+?, subtracting the control area from the
on-field data.

° *non-parametric estimated rate is positive with a = 0.015.




TEAPOT DOME - LIGHT HYDROCARBONS IN

ANOMALOUS 10-m HOLE 17; JANUARY, 2005
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TEAPOT DOME - LIGHT HYDROCARBONS IN

NON-ANOM.10-m HOLE 02; JANUARY, 2005
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Generic 8'°C of CHa4 vs. In(1/CH4) Diagram
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del C-13 CH4 (permil)

TEAPOT DOME - 10-m HOLES
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Teapot Dome - Winter, 2005
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Teapot Dome - Sectlon 10 Soil Gas Survey
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Teapot Dome Sectlon 10 Survey Area
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TRENCH 87-10W
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TEAPOT DOME - SECTION 10 - TRENCHES

87-10W and 87-10E
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INDIRECT INDICATORS OF GAS SEEPAGE
(from Klusman, 1993, Chapter 7)

Satellite imagery - Linear and circular features,
topographic highs, color shifts indicative of alteration

Secondary carbonate and sulphate minerals
513

C and 580 of cements and vein materials

Electrical resistivity of shallow subsurface

Horizontal gradient magnetic intensity indicative of
iron reduction producing magnetite and sulphides

Radiometric - redox processes inhibiting migration
of uranium and potassium-40 in near-surface

Gradients in temperature with depth - Heat flow
related to mass flow because of poor thermal
conductivity of rocks

Selected trace elements in soils - iodine, strontium,
ratioed to iron as indicators of redox conditions




INDIRECT INDICATORS OF GAS SEEPAGE

Gradients in inert gases with depth - variable results
because of high mobility of helium, high concen-
trations of neon and argon in the Earth atmosphere
overwhelming a signal from depth

UV fluorescence of organics extracted from soil
indicative of multi-ring structures

Geobotany and biogeochemistry — Natural selection
processes indicative of unusual soil chemistry

Satellite radar - detection of oil film on sea surface

Microbiological - Specific organisms tolerant of
alcohols produced by stepwise oxidation

Ground radar - indicative of polar molecules; water
vapor as a “carrier gas.”




Oil Production in Tom Green County, Texas

(from Foote, 1986)
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Horizontal Gradient Magnetometer Survey in
Tom Green County, Texas

(from
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Magnetic Anomalies over Marsh Creek Anticline in
Arctic National Wildlife Refuge, Alaska

(from Donovan et al., 1984)
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Isotopic Shift of Carbonate Cement Above Seepage at

Davenport Field, OK (from Donovan et al., 1979)
= 210 shallow dolomite cement samples on a grid
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In-fill Drilling by
December, 1981
Superimposed
Over 1974 Gamma
Radiation Survey
at Heldt Draw Oil
Field, Powder
River, WY (from

Curry, 1984)




A FEW MARTIAN SEEPS or WEAK MICROSEEPAGE CAN SUSTAIN
THE ATMOSPHERIC CH4 LEVEL (and the Mumma’s plume)

= the CH4 plume on Mars reflects an episodic emission of
~19,000 t CH4 yr-1 (Mischna et al., 2011) or
~150,000 t CH4 yr-1 (Lefevre and Forget, 2009)

'

equivalent to a diffuse microseepage of ~10-100 mg m=2d~! from an area of 500 to 5000 km?

If the whole 30000 km? olivine outcrop at the Nili Fossae (Hoefen et al., 2003) is assumed to
exhale, a microseepage of 2 mg m2d=! (the lowest level detected in terrestrial
peridotites) would be sufficient to support the plume

If a global Martian CH4 source of around 100-300 t yr is required to maintain the 10 ppb
atmospheric level (Atreya et al, 2007), one large mud volcano or a few small mud volcanoes,
or just a very weak microseepage, sparse in different zones of Mars, would be sufficient.

Etiope, Oehler, Allen (2011)
Etiope, Ehlmann, Schoell (2013)



SPECULATIONS ABOUT EXPERIMENTS ON MARS

e Slim coring device needed on rover
e Locations for coring visually selected based on surface geology

e Cores drilled to practical depth and inserted into incubation
chamber that can subsequently be sealed and warmed to
slightly above freezing

e Spike chamber with minor hydrogen and trace of water, CO2
indigenous in atmosphere

e Monitor pressure and atmospheric composition and isotopy
daily with TLS; two weeks enough(?); can be done while
traveling, DETECTION OF METHANOGENESIS (?)

e Pressure can detect adsorption/desorption and/or leakage

e Purge gas from chamber, spike chamber with minor oxygen
and a trace of water, methane, CO2indigenous in atmosphere

e Monitor pressure and atmospheric composition and isotopy; two
weeks enough(?); can be done while moving, DETECTION OF
METHANOTROPHY (?)

e Expel core from chamber; drill next core.




Main final messages

Observations of terrestrial gas seepage can be used to infer forms and magnitude of
potential seepage on Mars, and perhaps where to look

Seasonality on Earth is important

Low microseepage, sparse in different zones of Mars, would be sufficient to sustain
methane observed in the atmosphere

BUT, as on Earth, CH4 microseeping on Mars cannot be detected a few cm above the
soil, because of winds and dilution of the leaking gas

Recommendation
Geologic CHa on Mars should be searched preferably above or near
faults or at apparent mud volcanoes, by drilling into the soil or using
accumulation chambers on the ground



DETECTION OF MICROSEEPAGE
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