Atmospheric Distribution of Methane on Mars

Sébastien Viscardy

Frank Daerden

Lori Neary

"Methane on Mars" KISS Workshop, Pasadena (USA) – June 14th, 2016

sebastien.viscardy@oma.be

Royal Belgian Institute for Space Aeronomy (BIRA-IASB)

aeronomie•be

Plan of the presentation

- Simulations of the behavior of methane in the atmosphere of Mars after surface release
- Implications on previous and future observations
- Perspectives: simulating source and sink processes

General context

- Mumma *et al.*, Science (2009): detection of a plume of methane
- Mischna *et al.*, PSS (2011): model study of the behavior of this plume (Mischna *et al.*, PSS, 2011)
- Other GCM studies also focused on the horizontal spreading of methane (Lefèvre and Forget, Nature, 2009; Holmes *et al.*, Icarus, 2015)
- NOMAD onboard the ExoMars Trace Gas Orbiter (TGO) mission will provide the first vertical profiles of methane

Purpose of our model study

<u>Main question:</u> how does the methane evolve <u>vertically</u> in the atmosphere during the first weeks after surface release?

We focus on:

- the *vertical* distribution
- a short period after release (20 sols)

Short period (20 sols) vs. estimated lifetime of CH₄ (~300 years):
→ Methane is considered as an inactive tracer
→ No loss processes (neither chemistry nor other sink processes)

Ref.: Viscardy *et al.*, "Formation of layers of methane in the atmosphere of Mars after surface release", Geophys. Rev. Lett., 43 (2016)

3D GCM (GEM-Mars)

The model used in this study is the 3D General Circulation Model (GCM) called <u>GEM-Mars</u>. The model is developed at the Belgian Institute for Space Aeronomy (BIRA-IASB).

- horizontal resolution: 4°x4°
- 102 vertical levels from the surface to ~150 km
- vertical resolution:
 - 35 m near the surface
 - 1.2 km at 10 km altitude
- time step: 1/48 of a sol (30 Earth-minutes)
- amount of methane released: 5×10^6 kg

Plume of methane observed in 2003

Mumma et al., Science (2009)

Plume of methane observed in 2003

Mumma et al., Science (2009)

____0 [ppb]

10 days after release

10 days after release

20 days after release

Vertical evolution of methane: zonal mean

Zonal mean

Zonal mean

20 days after release

Surface release scenario: Southern hemisphere in mid Spring

- Source location: 45°S, 240°E
- Season: $L_s = 220^{\circ}$
- Instantaneous release
- Period: 20 sols after release

Surface release from 45°S, 240°E

Surface release from 45°S, 240°E

Surface release from 45°S, 240°E

Other surface release scenarios: I. Release in a preexistent background

no background

- Season: $L_S = 150^\circ$
- Instantaneous release
 - Uniform background of 10 ppbv of CH_4

Other surface release scenarios: II. "Pulse" vs. continuous release

- Source location: Nili Fossae (22°N, 78°E)
 Season: L_S = 150°
 - Continuous release over 10 sols

instantaneous release

continuous release over 10 sols

Other surface release scenarios: III. Pulse release in northern polar region

- Source location: polar region (80°N, 240°E)
 Season: L_S = 170°
- Instantaneous release

Implications: I. vertical distribution of methane observed in the past

Mumma et al., Science (2009)

0°N lat. 50°E lon. $L_s = 155^\circ$

Implications on the retrieval of vertical profiles of methane in solar occultation \rightarrow NOMAD mission

→ ~40 ppbv

Implications: II. Impact of dust on observations

Implications: II. Impact of dust on observations

Simulating source and sink processes of methane I. Release of H₂O together with CH₄

Wong et al., JGR (2003)

 \rightarrow Photolysis of water vapor at high altitudes might lead to the destruction of methane

Simulating source and sink processes of methane II. Sink process: CH₄ trapped by quartz grains

Laboratory experiments by Knak Jensen *et al.*, Icarus (2014): quartz grains agitated in an atmosphere of CH_4 for 115 days

→ wind driven erosion produces highly reactive sites on grain surfaces

- \rightarrow formation of covalent CH₃-Si bonds
- \rightarrow "A sink for methane on Mars? The answer is blowing in the wind"

Some issues:

- too few information available to parameterize this sink process
- what happens in presence of water vapor?

Simulating source and sink processes of methane III. Source processes

- As little information on the source processes is available, we considered very simple surface release scenarios considered in this model study.
- Several subsurface models simulate more realistical releases of methane from the ground:
 - O. Karatekin and E. Gloesener (Royal Observatory of Belgium)
 - A. Stevens et al., Icarus (2015)
 - R. Hu et al., Astrobiology (2016)
- Combining subsurface models with our GCM can allow to provide clues for the origin and emission sites

Conclusions

This study focused on the 3D dispersion of methane throughout the atmosphere after the surface release → Layers of methane may form during the first weeks

This result has potential implications:

- previous observations should be reinterpreted in the light of this result
 - the local mixing ratio can be higher than the column averaged mixing ratio
 - the mixing ratio higher up in the atmosphere above Gale could be much higher than those measured at the surface by MSL
- If NOMAD detect layers, this can be indicative of very recent surface emission

Perspectives:

simulating outgassing and loss of methane on Mars

- Implementation of the chemistry of methane in the GCM
- Impact of oxidizers on methane at high altitudes when CH₄ is released together with water vapor
- Investigation of recent sink processes proposed in the literature (e.g. Knak Jensen *et al.*, Icarus, 2005, etc.)
- Combination of subsurface models with the GCM:
 - simulation of more realistic release scenarios
 - clues for the emission sites and the origin of methane
- Support to the measurements of the first vertical profiles of methane by NOMAD