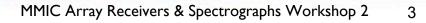
MMIC Array Receivers and Spectrographs Workshop 2

23-24 March 2009

Focal Plane Array Program at NRAO NRAO

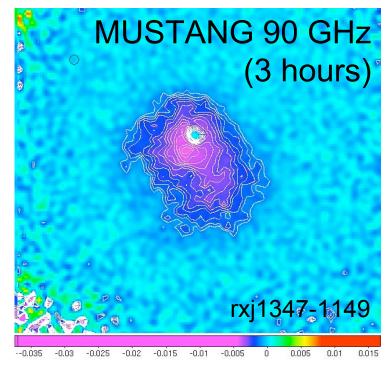
> Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array


NRAO Focal Plane Array & Camera Program

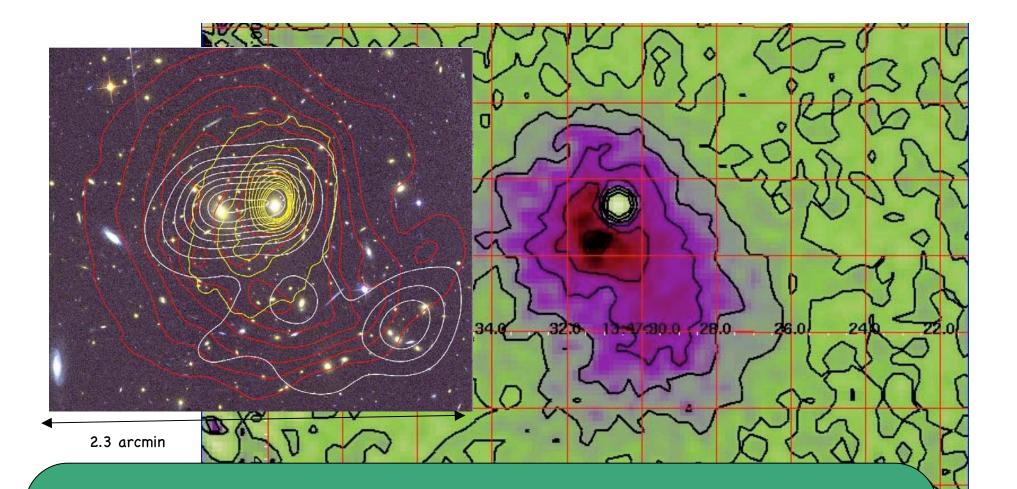
- Long-Term Vision:
 - Technical Development for Square Kilometer Array
 - Beam Forming Arrays (Low Frequency through $\sim \lambda 1$ cm)
 - Increase FOV for interferometers ALMA, EVLA
- Near-Term Vision
 - Scientific Enhancement for GBT through Large Format Arrays
 - Bolometer Cameras at 3 mm
 - Spectroscopic Systems at Key Frequency Bands
 - 3 mm (W-Band)
 - 1.3 cm (K-Band)
 - Others (e.g, 7 mm)
 - Testbed for SKA work beam forming arrays

Status & Goals

- GBT Pathfinder Instruments
 - MUSTANG Bolometer Camera (64-pixels) Early Science
 - 7-pixel K-Band (1.3 cm) Array under construction (for spectroscopy)
- Beam Forming R&D work
 - Collaborative program with BYU
 - MRI grant in progress
 - Instrumentation tests on 20 Meter telescope at GB
- MRI proposal to expand MUSTANG to 256 pixels submitted
- Proposal for 1000-element bolometer camera developed
- Concept for large format (e.g. 100-element) 3 mm array for GBT
 nder development


MUSTANG (64 pixel bolometer array)

Resolution	9" (FWHM)
Beam spacing	4"
N-pixel	8x8
Current sensitivity	T _{sys} =140K
Target sensitivity	T _{sys} =28K
Bandwidth	18 GHz


- Currently 5x from photon noise
- Arrays 1x photon noise exist
 4x increase in Npix ~\$500k
 16x increase in Npix~\$3M

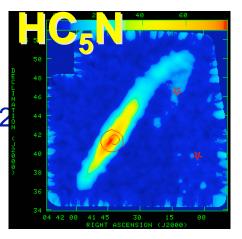
NRAC

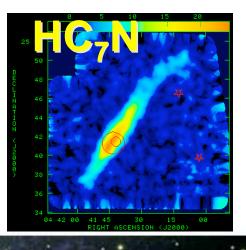
 120 detectors on GBT ~ ALMA for 3mm continuum mapping speed

First MUSTANG+GBT Detection of SZ! Bodes well for use of SZ as a detailed probe of ICM physics [Mason et al.]₄

Lensing Mass Map Galaxy Density Xray Surface Brightness **Optical + Xray (Left)** Bradac et al 2008

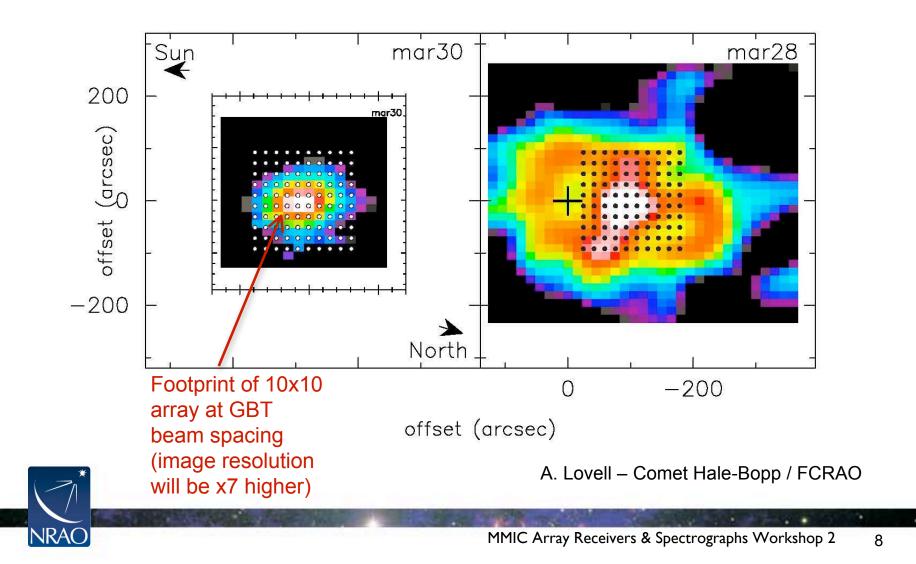
MUSTANG SZ (Right) Similar angular scales


۰.


GBT Spectral Line FPAs

- 7-pixel prototype K-band Array to be released in late 2
 - First element tested on the sky results excellent

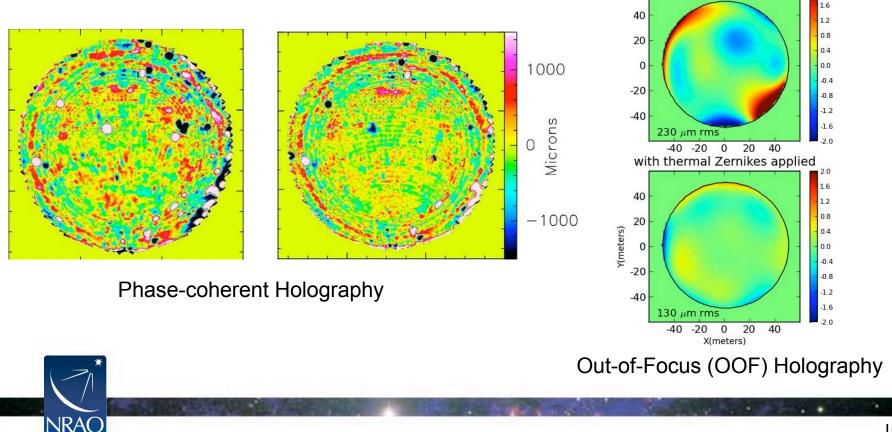
- Next step involves increasing the number of pixels
 - 100+ pixel W-band (3 mm) array
 - 61-pixel K-band (1.3 cm) array
- Signal transmission and processing infrastructure required
 - Need increased data transmission capability
 - Need new signal processing system


Large Format FPAs

- Building a large FPA has no technological blocks, but.....
- Full cost of first large array is very expensive:
 - R&D into:
 - Packaging the system
 - Calibration algorithms to take advantage of the multiple beams
 - Data displays both for quick look (while observing) and data reduction
 - Need digitized data transmission system
 - Current system is \$30k/line; Need R&D into something less expensive
 - New backend- FPGA technology would be straightforward to use
 - Estimated cost for first, large-format FPA is \$25-\$30M
 Want to reduce this cost through R&D (w/ partners)
 Subsequent arrays would be ~1/4 cost.
 NRAO is seeking partners for such projects.


Science Application – Molecular Line Imaging of Comets

Cometary line emission is time-variable, with low surface brightness (large, filled aperture will be optimal). One molecular species gives rise to another (e.g. HCN \rightarrow HCO+), so rapid, sensitive imaging is key. HCN J=1-0 HCO+ J=1-0


Science Application – Molecular Line Imaging of Comets

HCN J=1-0 maps

Optimizing the GBT for 3 mm Operation

- Holography project has reached 15% aperture efficiency at 90GHz
- Goal of 35% (20%) aperture efficiency at 90 (115) GHz

Daytime Q-band aperture phase

2.0

Optimizing the GBT for 3 mm – Continued: Dynamic Scheduling System (DSS)

- ≥20% of Green Bank's weather is usable at high frequencies
 - GBT high frequency time is highly oversubscribed
 - Need to ensure the best possible use of a limited resource
 - GBT DSS will maximize science output at high frequencies
- GBT DSS will be released Fall 2010 in prototype form with enhanced versions to follow

Next Steps

- NRAO is writing "Requests for Information" papers for the Decadal Survey (due April 1) that will emphasize the FPA program
- Developing science and technology drivers for a 3 mm (W-Band) Array
- Actively seeking partners!
 - Contact Karen O'Neil in Green Bank

