Array Spectrographs for Radio and (Sub)Millimeter Wavelength Astronomy

Karl M. Menten Max-Planck-Institut für Radioastronomie

Bolometer arrays have completely dominated the field of submillimeter *continuum* observations for ~20 years now

The power of (bolometer) array science

The Galactic Center Region as seen by SCUBA at 850 µm

Pierce-Price et al. 200

Heterodyne arrays are becoming available just now:

A&A 423, 1171–1177 (2004) DOI: 10.1051/0004-6361:20034179 © ESO 2004 Astronomy Astrophysics

A 230 GHz heterodyne receiver array for the IRAM 30 m telescope

K.-F. Schuster¹, C. Boucher¹, W. Brunswig¹, M. Carter¹, J.-Y. Chenu¹, B. Foullieux^{1,2}, A. Greve¹, D. John¹, B. Lazareff¹, S. Navarro¹, A. Perrigouard¹, J.-L. Pollet¹, A. Sievers¹, C. Thum¹, and H. Wiesemeyer¹

HERA = HEterodyne Receiver Array

Common sense requirements:

600

Concentrate here an molecular line astronom

Advantages of array receivers:

- Mapping speed
- Mapping homogeneity (map lage areas with similar weather conditions/elevation) → minimize calibration uncertainties.

Common sense requirements for any array RX:

Important:

- Uniform beams
- Uniform T_{RX}

and

 $T_{\rm RX}$ not "much" worse than $T_{\rm RX}$ of state-of-the-art single pixel

All of the above superbly met by MMIC array spectrographs!

Heterodyne array molecular line astronomy

- Study large-scale distribution of gas an various scales \rightarrow CO
- Unbiased imaging to find "interesting" regions (= star formation). In particular: probe protostars and their environments)
 - Signposts (= masers)
 - CH₃OH 6.7 and 12.2 GHz, H_2O 22.2 GHz
 - Regions of high density/column density/temperature
 - Ob serve thermal emission from "tracer" molecules
 - Once found, *map column* density
 - \rightarrow model calculations \Rightarrow temperature/density

K-band-Science (18 – 26 GHz)

• For temperature and column density determinations ideal: Ammonia (NH₃)

• Multiple K-band lines (23.6 – 25 GHz) that car be done simultaneously

and

- simultaneously with 22.2 GHz H₂O maser line
 and
- simultaneously with 25 GHz series of CH₃OH lines (maser and thermal)

 \Rightarrow K-band RX array would be VERY interesting!

NH₃ in Infrared Dark Clouds

Effelsberg 100m

Dissertation of T.

W-band-Science (80 – 116 GHz)

- Apart from CO J=1-0 lines there are ground- or nearground-state transitions of HCN, HNC, CN, N_2H^+ , HCO⁺, CH₃OH, SiO... all between 80 and 115 GHz
- Because of their high dipole moments, these species trace high density gas (n > 10⁴ cm⁻³) (↔ CO: n > 10² cm⁻³)
- Large-scale distribution of these molecules on larger GMC scales poorly known
- Strong emission in these lines, as well as in rare C¹⁸O isotope, traces high column densities (\rightarrow star formation
- These lines are very widespread (= everywhere) over the whole Galactic center region (-0.5⁰ < I < 2⁰)

The interstellar medium in the Central Molecular Zone of our Galaxy

The Central Molecular Zone (CMZ)

- huge Giant Molecular Cloud (GMC) complex:
 - ~0.3° broad band around the center of our Galaxy from I = +1.9° to -1.
- GMCs in CMZ have properties that are quite different from "normal" (i.e. spiral arm) clouds: they are much
 - denser (n ~ 10⁴ cm⁻³ vs. 10² cm⁻³),
 - much warmer (60 K < T < 120 K vs. 10 − 20 K),
 - and much more turbulent ($\Delta v \sim 10 20$ km/s vs. a few km/s).

Sensitivity

$$rms = \frac{const \cdot T_{sys}}{\sqrt{\Delta v \cdot t_{int}}}$$

For Fast Fourier Transform Spectrometers (FFTS), *const* ≈ 1

Assume

 $T_{\rm sys}$ = 100 K and

 $\Delta v = 1 \text{ km/s}$

- $\Rightarrow \Delta v = 300 \text{ kHz}@90GHz$
 - = 80 kHz@24 GHz

 \Rightarrow rms(1 sec) = 0.2 K at 90 GHz and 0.35 K at 24 GHz

Mapping speed

- \Rightarrow rms(1 sec) = 0.2 K at 90 GHz and 0.35 at 24 GHz
- IRAM 30m Effelsberg 100m
- 24" FWHM@90 GHz 40"@24 GHz
- Positions to observe for a Nyquist-sampled map of 1 square degree
- 90000 32400
- Time needed for a map with an N pixel array
- 25/N hours 9/N hours

Mapping speed and sensitivity estimates indicate that very lare sections (if not all) of the Galactic plane can be imaged

HUGE advantage over SiS arrays: Many lines in HEMT band ca be imaged *simultaneously*

Necessary Spectrometer capability:

Example W-Band:

- Want to do 20 lines simultaneously
 - need ~300 km/s (= 100 MHz) each
- \Rightarrow Need N \times 20 \times 100 MHz = N \times 2 GHz

2 GHz FFTS bandwidth cost ~ a few kEU today

At today's prizes, an FFTS for a 100 element array would "only cost a few hundred kEU

HOWEVER: Above is the *de luxe* correlator. To save money, could do fewer lines, use narrower bandwidths

Other *most interesting* projects include complete (mostly) ¹²C(and ¹³CO mapping of nearby galaxies.

These are HUGE (many square arc minutes)!

Such maps would be interesting in their ²⁰⁰ absolutely necessary as zero spacing ir the PdBI, and ALMA.

REALLY FANTASTIC would be MASs or

... and they would make these facilities ALMA era, as ALMA will not have MASs

Subject: Fwd: MMIC Array Receivers and Spectrographs Workshop 2: program

From: Tim Pearson <tjp@astro.caltech.edu>

Date: 19.03.2009 23:12

To: Karl Menten <kmenten@mpifr-bonn.mpg.de>

Cc: Charles Lawrence <charles.r.lawrence@jpl.nasa.gov>, Tony Readhead <acr@astro.caltech.

Dear Karl,

I hope you will be able to give us a short presentation on current developments at MPIFR, APEX, etc., and provide a European perspective for our workshop. We look forward to seeing you in Pasadena on Sunday!

Regards

Tim

The Atacama Pathfinder Experiment (APE

Built and operated by

Max-Planck-Institut fur Radioastronomie

Chile

10%

ESO 24% MP

45

OSO

21%

- Onsala Space Observatory
- European Southern Observatory

on

Llano de Chajnantor (Chile) Longitude: 67° 45' 33.2" W Latitude: 23° 00' 20.7" S Altitude: 5098.0 m

• Ø 12 m

- λ = 200 μm 2 mm
- 15 μm rms surface accuracy
- currently (June 2005) in final testing phas
- PI and facility instruments:
 - 345 GHz heterodyne RX
 - 295 element 870 μm Large Apex Bol meter Camera (LABOCA)

The need for large area mapping:

Bolometer arrays are getting ever larger:

SCUBA

LABOCA

SCUBA-2

37 bolometers yesterday

295 bolometers since 2007

2 × 5128 bolometers 2010?

In addition: MAMBO-II, Bolocam, SHARC-II, ...

ATLASGAL (APEX Telescope Large Survey: The Galaxy)

- Main goals:
 - To have a complete 350 GHz census of high mass star formation in the Galaxy (= whole part of Galactic plane visible with APEX)
 - To detect protostellar condensations down tens of M_{\odot} throughout the Milky Way

Total observing time: ~1000 hours

Some LABOCA Results

M104 (El Sombrero)

NGC 253

Vlahakis et al. 200

Weiss et al. 2008

Centaurus A

Optical/VLA 6cm (Burns e tal. 1983)

APEX 870 μm

z = 2.38 Protocluster with Ly α blobs

LABOCA 870 µm

Beelen et al. 2

UCB/APEX SZ Array

http://bolo.berkeley.edu/apexsz/

- horn coupled array
- 330 bolo's in 6 wedges
- Each TES bolometer coupled through resonant circuit to SQL readout
 - direct path to Multiplexing
- 150 GHz and 217 GHz k swapping horns & filte

SZ detections from APEX-SZ

Halverson et al. 2009 +

Max-Planck-Institut für Radioastronomie

CHAMP+

Carbon Heterodyne Array of the MPIfR

- 2 × 7 pixels
- frequency ranges 602 720 and 790 – 950 GHz simultaneously
- beamsize 9" 7" and 7" 6"
- IF band 4 8 GHz

http://www.mpifr-bonn.mpg.de/div/mm/tech/het.html#champ http://www.strw.leidenuniv.nl/~champ+/

APEX Instrumentation: CHAMP+ mapping

CHAMP+ footprint on M

Beam-spacing: 2 FWHM on sky ~7arcsec @850GHz ~9arcsec @660GHz

APEX Heterodyne Instrumention

AFFTS :: Array-FFTS for APEX

Decedere 00 March (

Broadband Fast Fourier Transform Spectrometer (FFTS)

- state-of-the-art and future prospects -

Bernd Klein

Max-Planck-Institut für Radioastronomie, Bonn - Germany -

Max-Planck-Institut für Radioastronomie

IF input

FFTS :: The MPIfR-Board

- → Instantaneous bandwidth: 0.1 1.8 GHz
- → Spectral resolution @ 1.5 GHz: 212 kHz
- → Stability (spec. Allan Variance): > 1000 sec.
- Calibration- and aging free digital processing

FFTS :: Stability

Max-Planck-Institut für Radioastronomie

The spectroscopic variance between two 1 MHz broad channels, separated b 800 MHz within the band, was determined to be stable on a timescale of ~4000

FFTS :: Signal Processing

Max-Planck-Institut für Radioastronomie

Unlike the conventional windowed-FFT processing, a more efficient polyphase pre-processing algorithm has been developed with significantly reduced frequency scallop, less noise bandwidth expansion, and faster sidelobe fall-off.

Equivalent noise bandwidth = 1.16 x frequency spacing

FFTS :: FPGA configurations

Max-Planck-Institut für Radioastronomie

Today, implemented FFTS board / FPGA configurations are:

- 1 x 1.5 GHz bandwidth, 1 x 8192 spectral channels, ENBW: 212 kHz (default core)
- 1 x 1.8 GHz bandwidth, 1 x 8192 spectral channels, ENBW: 255 kHz

- 1 x 750 MHz bandwidth, 1 x 16382 spectral channels, ENBW: 53 kHz
- 1 x 500 MHz bandwidth, 1 x 16384 spectral channels, ENBW: 35 kHz
- 1 x 100 MHz bandwidth, 1 x 16384 spectral channels, ENBW: 7 kHz
- 2 x 500 MHz bandwidth, 2 x 8192 spectral channels, ENBW: 71 kHz (in lab test)

The Equivalent Noise Bandwidth (ENBW) is the width of a fictitious rectangular filter such that the power in that rectangular band is equal to the (integrated) response of the actual filter.

Max-Planck-Institut für Radioastronomie

The superior performance, high sensitivity and reliability of MPIfR FFT spectrc has now been demonstrated at many telescopes world-wide.

Spectrum towards Orion-KL. The high-excitation CO(7-6) transition at 806 GHz was observed with the central pixel of the CHAMP+ array.

Further details:

- B. Klein, et al., Proc. of ISSTT 19th, page 192, Groningen 28-30 April 2008
- http:://www.mpifr-bonn.mpg.de/staff/bklein

XFFTS :: The 2.5 GHz development

Max-Planck-Institut

für Radioastronomie Currently in development: The 2.5 GHz bandwidth FFTS for GREAT

Goal: 2.5 GHz instantaneous bandwidth with adequate spectral resolution (~100 kHz to be operational in time for SOFIA's early science flights in summer 2009!

Max-Planck-Institut für Radioastronomie

XFFTS :: The 2.5 GHz development

APEX: First Spectra ...

Max-Planck-Institut für Radioastronomie

Advantages of our new generation of compact FFT spectrometer

- FFTS provide high instantaneous bandwidth (2.5 GHz demonstrated in field tests) with many thousands frequency channels
 - → offering wideband observations with high spectral resolution without the comple of the IF processing in a hybrid configuration.
- They provide very high stability by exclusive digital signal processing. Allan stability times of > 1000 seconds have been demonstrated routinely.
- Field-operations of our FFTS over the last 3 years have proven to be very reliable, w calibration- and aging-free digital processing boards, which are swiftly re-configurab by Ethernet for special observation modes.
- Low space and power requirements thus safe to use at high altitude (e.g. APEX at 5100-m) as well as (potentially) on spacecrafts and satellites.
- Production cost are low compared to traditional spectrometers through use of only commercial components.

Max-Planck-Institut für Radioastronomie

FFTS :: Contact, Distribution

Contact:

For further information about the MPIfR FFT spectrometer, future developments and applications, please contact Dr. Rolf Güsten (<u>rguesten@mpifr.de</u>) or Dr. Bernd Klein (<u>bklein@mpifr.de</u>) at the Max-Planck-Institut für Radioastronomie in Bonn, Germany.

Distribution:

http://www.radiometer-physics.de

MASs and FFTSs

Synergy – Pooling resources

- Potential "users" for FFTSs and MASs
- (= possible co-financers):
- IRAM
- . APEX
- LMT
- Effelsberg 100m telescope, GBT
- GBT
- Madrid 40m telescope

+ ...

Sardinia Telescope