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From snapshots to (slow) movies of the sky
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SDSS, Pan-STARRS, ASAS-SN, Skymapper, ... (Just in the optical) SKA



Catalina Real- tlme Transient Survey (CRTYS)

Time (days since 2007-01-01)

Time (days)

Most (but not all!) are flaring dwarf stars (UV Ceti)

Date MJD - 53249 (2004-09-01)
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2008 TC3 discovered by CSS on 7 Oct 2008

Impact Trajectory of 2008 TC3
on October 7, 2008

2:00UT -

.Earth

2009 FH orbit

March 17, 2009

Low cost ‘sample return mission’



Zwicky
Transient
Facility

S Area: ~47 deg?
B (576M pixels)

g Rate: 3760 deg? / hour
Depth (56): r ~ 20.5 mag.
Filters: 3 (g, r, 1)
Public survey:
~ 15Kk deg?/3 nights




F Zwicky Transient Facility

- Systematic Exploration of the Dynamic Sky -

DR1 MSIP (public) data
ztt.caltech.edu

#lightcurves with #lightcurves with #lightcurves with #lightcurves with
Nops=2 Nops=5 Nops=10 Nops =20
g 704,000,504 589,547,084 508,917,850 391,041,883
r 1,334,687,993 1,142,671,302 1,013,283,728 852,773,692
g+r 2,038,688,497 1,732,218,386 1,522,201,578 1,243,815,575

Time series for over a billion sources


http://ztf.caltech.edu

Variability tree: Many nodes have further subdivisions

Alerts 100K alerts/night
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Scheduling follow-up and brokers



A Variety of Classification Methods

Phenomenology

Class A

Bayesian Networks \
Can incorporate heterogeneous and/or &
missing data '~
Can incorporate contextual data, e.g., /' \
distance to the nearest staror galaxy O ® ©@ ©@ © O O

Incidental Other observed

Probabilistic Structure Functions paraeter o parameter
A new method, based on 2D [A?;, Am]
distributions
Now expanding to data point triplets:
Ati2, Amjz, A2z, Amos, giving a 4D
histogram
Random Forests
Ensembles of Decision Trees
Feature Selection Strategies
Optimizing classifiers
Machine-Assisted Discovery

A magnitude
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Sparse Data
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Characteristic Strain

ZTF J153932.16+502738.8 Burdge et al, Nat 24 Jul 2019

hot primary = 0.6 M

| WD (likely C-0O),

cool secondary =<0.2 M
WD (likely He).
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light curves from CHIMERA, ZTF, KPED (Kitt Peak)



Statistical features Streaming updates!

Compute features (statistical measures) for each light curve:
amplitudes, moments, periodicity, etc.

Converts heterogeneous light curves into homogeneous
feature vectors in the parameter space

Apply a variety of automated classification methods
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flux_%_mid20
flux_% mid35
flux_% _mid50
flux_% mid65
flux_%_mid80

freq_n_alias
freq_varrat

As /A1
Az /Ay,

freq_y offset

stetson_j
stetson_k

Many features

Adam Miller

- not all are independent
fold 2p slope 10%

scatter res_raw

fold 2p slope 90%
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CI u S e ri n g i lodi‘:ing | Spectral

| ” _ labels,
classification >10K,

discreet scikit-learn

algorithm cheat-sheet

iy g regression

regression

classification
: WORKING

(E::Inse$ble . SGD
assifiers NOT :
Classifier

WORKING

YES sam|

. SGD .
ElasticNet
6’:&“3\3 \ Hlastichet SVR(kernel="rbf")
ves - category
YES ’ Res EnsembleRegressors
NOT do you have N ‘
labeled NO few features “or
data should be WORKING
. YES important
NO RidgeRegression

SVR(kernel='linear")

predicting a
quantity
NO

Spectral WORKING
L —
<

bedding

. oT Y- LLE
No WORKING

B o dimensionality
tough - 4 predicting .
@ @ reduction

dimensionality reduction

Labeled data, versus continuous variables

We will concentrate on supervised classification



Change/event detection (ZTF)

Sci Ref Diff




Brokers

Distributed - Distributed

! messaging ) . database )

ALeRCE . . ¥
Bkafka. .,

\ / cassandra

& O

docker kubernetes




‘braal’ the real-bogus separator
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| ' | \
ja ~ . - ' -
C 4
MAXPOOL 2x2 od + e ——
A Bl v RELL
CONVIs+ © ONV 33 4
,IAXPom 2x2 aurs RELU L/
stpice 2 3

! Dropout 0.5

g _ FLATTEN

SCI CONV 3 YR: L1l S+
RELU

Also demonstrated with TPUs
Duev et al.



Image subtraction for hunting transients without subtraction

Encoder/decoder

- e '._ S ~ Encoder | Decoder '
3 L

&

arXiv:1710.01422



Deep Learning with AStreaks

-uunlf?

S apmag \173 scvore a0
apmag;;15.4 SCRre 8 These are ghosts and dementors
This is how a real asteroid would look. Short
streak.

i el . SO
Rone : 3
. 3

. Sy apmag 16.3 score 63
" apmag 17.1 score 71
Another satellite trail

A satellite trail. Note that part of it is masked out,
and the unmasked trail is longer.

apmag 16.2 score 63

A masked bright star

What kind of streak do you see?

@® Asteroid (short streak)

Satellite (long streak - could be partially
masked)

@® Masked bright star

® Dementors and ghosts
® Cosmic rays

@® Naked stars

® Yin-Yang (multiple badly subtracted stars)

Skip (Includes 'Not Sure' and seemingly 'Blank

Images')

Need some help with this task?

&

Duev et al.

Show the project tutorial



Mahabal, Sheth et al., 2017
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Effect of earthquakes

time: 2017-02-13 07:17:12, mag: 5.3, loc: 92km S of Tok, Alaska, dist: 2310.29589934 km||time:
2017-02-13 07:20:39, mag: 4.4, loc: 156km WSW of Hihifo, Tonga, dist: 8945.84873213 km||
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LIGO Putting the instrument in safe mode in case of an adverse event



Nearly clean separation of lock-loss events in GW detectors using cavity channels

Input Mode
Cleaner (IMC)

Y 4 km Fabry-Perot
arm cavities
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Unsupervised . t{-SNE
classification e UMAP



We may need more unsupervised learning (combined with not-so-easy-validation)

When we're learning to see, nobody's telling us what the right
answers are - we just look. Every so often, your mother says
"that's a dog", but that's very little information, You'd be lucky
if you got a few bits of information - even one bit per second
- that way. The brain's visual system has 10"14 neural
connections, And you only live for 10°9 seconds. So it's no
use learning one bit per second. You need more like 10"\5 bits
per second. And there's only one place you can get that
much information: from the input itself, Geoffrey Hinton, 1996

Human on the loop,
transfer learning
and all that

Reuters



ZTF ~0.1 LSST

F

(557,

No. of sources 1 billion 37 billion
No. of detections 1 trillion 37 trillion
Annual visits per source 1000 (2+1 filters) 100 (6 filters)
No. of pixels 600 million 3.2 billion
(1320 cm? CCDs) (3200 cm? CCDs)
Field of view 47 deg? 9 deg?
Hourly survey rate 3750 deg? 1000 deg?
Nightly alert rate 1 million 10 million
Nightly data rate 1.47TB 15TB

42!




Astronomy’s continuing battle with bigdata

Volume: TB -> PB -> EB -> ZB

Velocity: Real-time analysis/publishing/follow-up (partly
‘Volatility’ too). Variability on ms to s to days

Variety: 400 classes - multiband images; time series; spectra;
polarization; ...

ZTF: 1.4TB/day
SKA: EB/day

Veracity: error-bars; fuzzy classifications



The First Paradigm:

Experiment/
Measurement

The Second Paradigm:
Analytical Theory

The Third Paradigm:
Numerical Simulations

The Fourth Paradigm:
Data-Driven Science




Hypothesis-driven science Data-driven science

{ Hypothesis/theory} { Dgcztztfee;;s }

<

. / \
[ Experiment J Data exploration,
‘ \Pattern discovery

J

{ Data analysis} "'

‘ [ Hypothesis/theory}

[ Understanding } "'

[ Understanding J

The two approaches
are complementary



A Modern Scientific Discovery Process

Data Gathering (finstruments, sensor networks,
their pipelines...)

L Data Farming:

Storage/Archiving
Indexing, Searchabillity }
Data Fusion, Interoperability

Ls Data Mining

Pattern or correlation search
Clustering analysis, classification
Outlier / anomaly searches
Hyperdimensional visualization

L>Data Understanding
+feedback L»
QQ New Knowledge

Databases
Data grids

Key
Technical
Challenges




Real Time Classification and Response

Lake Castalc M4 2 Jan 4 2015 Heatmap AMUNICATIONS
k .......... > i o vy ;, ar: \ ~§-x ¥

Seismology: N 4:, e SORCM ity
Cell phones as a TN I e A2 w«, B “Vour Phontil o]
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Time domain
astronomy

\V

Event

B L L e 4 & R A - A s ceccces o -

Decision

assification making




Ashish Mahabal

Consistency - solid Consistency - pure GGN

&
Solid or PSN Diff. axial levels - PSN
(Part Solid Nodule) (by consensus)

Axial Coronal Axial Coronal

29



Normal Cancer

Extract bounding LUNA16/Kaggle1 trained

NLST Dicom Slices: Segmentagon boxes of nodule model predicts cancer
~1000 Patients

GRT123
Fangzhou, L. (2017)

Domain adaptation and transfer learning

Accuracy 87% on GRT1
Repeat on NLST data
Retrain final layer with NLST data to improve

Also protein folding
Bioinformatics,

Explainability/Interpretability!

Ashish Mahabal 30



IMAGE WORE
Large Scale Visual " .
Recognition Challenge ;' -+

AlexNet architecture (May look weird because there are two different “streams”. This is because the training process was so
computationally expensive that they had to split the training onto 2 GPUs)

e 2012: Alexnet (error rate 15.4%)

e 2013: ZFnet (error rate 11.12%) ILSVRC

 DeConvNets (Caffe)

image size 224 110 26 13 13 13

filter size 7 ¢ 3 ‘L 3
1 w384 1 w384 256 ]

I N N
lstride 2 X 3x3 max C

3 max contras pool| |contra pool 4096( | 4096 class

ri norm. ri norm. stride 2 units units | softmax

6 256
Input Image - -
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

ZF Net Architecture

Adit Deshpande

https://adeshpanded.qgithub.io/adeshpanded.qgithub.io/The-9-Deep-L earning-Papers-You-Need-To-Know-About.html
Ashish Mahabal 31



https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

20160 ILSVRC leaderboard

L Number of object

Team name Entry description lcategories won mean AP
ICUImage Ensemble of 6 models using provided data 109 0.662751
Hikvision SQEemble A of 3 RPN and 6 FRCN models, mAP is 67 on 30 |0.65270 4

oL Ensemble B of 3 RPN and 5 FRCN models, mean AP is
Hikvision 66.9, median AP is 69.3 on val2 18 |0'652003
NUIST submission_1 15 0.608752
NUIST submission_2 9 0.607124
Trimps-Soushen |Ensemble 2 8 0.61816
360+MCG-ICT- : —_ : :
CAS_DET 9 models ensemble with validation and 2 iterations 4 |0.615561
360+MCG-ICT- e .
CAS_DET Baseline: Faster R-CNN with Res200 4 |0.590596
Hikvision Best single model, mAP is 65.1 on val2 2 0.634003
ICIL Ensemble of 2 Models 1 0.553542
360+MCG-ICT-
CAS_DET 9 models ensemble 0 |0.613045

Classification error:
0.02991

Ashish Mahabal 32



. Hendryks et al.
Natural Adversarial Examples 1907 0717
Fox Squirrel , Sea Liog (99%_) agonﬂy l_w_anhol Cover (99%) Mushroom Pretzel (99%) Bullifrog Fox Squirrel (99%)

6 3N R e ~
4 '. - 5 AN ‘o <

A e %rf . . . - ‘ \ N v

. o ﬁ 2 L N\

Figure 1: Natural adversarial examples from IMAGENET-A. The red text is a ResNet-50 prediction
with its confidence, and the black text is the actual class. Many natural adversarial examples are
incorrectly classified with high confidence, despite having no adversarial modifications as they are
examples which naturally occur in the physical world.

Candle Jack-o'-Lantern Gossamer-Winged Butterfly Broom Racket

- » - N

Unicycle Jay
aK -

Figure 2: IMAGENET-A examples demonstrating that classifiers may predict a class even without a
plausible shape in the image to support its prediction. The red text is a ResNet-50 prediction, and the
black text is the actual class.

Ashish Mahabal 33



Out-of-Distribution Detection Using Neural Rendering Generative Models

Original Plane Reconstructed from Label “Cat”

Huang et al.
arxiv: 1907.04572

Reconstruction in presence of
wrong labels shows how this is
different from deep-dreaming

Figure D.3: Top row: Original airplane image (left) vs airplane image reconstructed from label "Cat"
using optimal latents for reconstructing original plane (right). Bottom row: Original cat image (left)
vs cat image reconstructed from label "Airplane” using optimal latents for reconstructing original cat

CIFAR 10 Tram CIFAR 10 Test

Latent variable visualization

Layerd  layer5 = Layer6  Layerd&  Layer5 _ _ lLayer

yyyyyyyyyyyyyyyyyyyy

Fewer Iabels could be SUﬁlClent Figure E.4: Mean of rendering latent variable s(£) at each layer. We see that for CIFAR-10 train

and test sets, the mean latents are almost the same. The mean latents for SVHN show conspicuous
difference from those of CIFAR-10.



Interpretability

Today

* Why did you do that?

ol |- _
=S = T * Why not something else?
imB NE ¥ Learning This is a cat * When do you succeed?
====g" Process (p = .93) « When do you fail?
: ‘ *» When can | trust you?
HE~A~0n
[ Waijernt] §t Nefia) * How do | correct an error?
Training Learned Output User with
Data Function a Task
— * | understand why
N - S This is a cat: » | understand why not
oW LEL0% ££ | 1t has fur, whiskers, « | know when you'll succeed

and claws.

«It has this feature: * | know when you'll fail

Learning [ ‘,“ i'ii.“i"!.‘
. . * | know when to trust you

Process

CEEEE dobr Sk . * | know why you erred
Training Explainable  Explanation User with
Data Model Interface a Task

David Gunning (DARPA/120)

https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20l1JCAI-16%20DLAI%20WS. pdf
Ashish Mahabal 35



Learning Techniques (today) [2016] Explainability

T (notional)
- e \ \~ Graphical —a21©
Models ’ R |: ]
| Deep ] ""Ensemble c tati
o T elle els | |

o DI

TN\ SRL \/?a de
ll CRFs HBNs v orests
 Statistical OGS we—" | —
. Models Pl Decision

SVMsw\TF%S / Explainability

Pr:diction\ rac

David Gunning (DARPA/120)

Ashish Mahabal 36



Distribution Summaries .?

cccccccc

layer1/biases
/ 93%
0.160 - 84% 160
69%
0.140 median (50%)
0.120 { (---)
0.100 oo
_ minimu m
0.0800 -t 0.0800
0.0600 0.0600

~

0.000 200.0 400.0 600.0 800.0 1.000k

Ashish Mahabal

3

\l

TensorFlow

0.000 200.0 400.0 600.0 800.0 1.000k

Percentile distributions
over the data;:
max, 93, 84, 69, 50,
31, 16, 7, min

Interactivity



Visualization for interpretability

A. Activation Maximization https://raghakot.github.io/keras-vis/
* |nitial layer ftilters easy to visualize
Generate input image that activates later filters
B. Saliency Maps
» (Gradient of o/p category wrt input |mage
» Understanding attention of the classifier :
C. Class Activation Maps ;
Gradients based on first dense layer
Spatial information still intact

Fe t Hdd Hdd
Inputs map 0 utputs
A l@23x24 64@21 x22 64@11 x11 128@7 x7 256@3 x3 512 512

B Wc \QB

Convolution Maxpoo I Convolu t Fully Fully
3x3 kernel 2x2 kernel 5x Sk I 5 Sk I cccccccccccc

Astronomy time-series

Ashish Mahabal 38



Towards the Glass Bead Game

This is just a

Classification low-dimensional projection

CRTS

ﬁ \babamul

ZTF
' Antares

S
"‘
A cience
Gaia AlLebl
Holy grail

o —— —Lasair
Pan-STARR / ransiNet

LSST Data Science/ML

SKA

Sky surveys opening exciting windows
surveys A lot more possible than what is presently done



JPL has established a program focused on building and JPL Data Science

implementing an institution-wide strategy for data science Rich Doyle/Dan Crichton
 Expanding from archives to enable data analytics as a first class activity
 Methodology transfer across disciplines
 Research partnerships with academia, government, and industry

CD3 Caltech George Djorgovski

Data Science pilots

PilotTitte . [Domain______[Lead, Organization |

Data-driven Model Adaptation: From Theory to Application Robotics and Ali Agha, 347 -

Active Learning and Importance Sampling Applied to Monte Science Wayne Chi, 397 2 FY1 9 DS prOJGCtS

Unpacking the black box of Machine Learning for Mission Operations S. Davidoff, 397

Self-improving hybrid retrieval schemes that learn from long- Science Anthony Davis, 329 H H . . H
Automatic Per-Pixel Classification of UAVSAR Imagery Mission Operations Michael Denbina, 334 M ISsion O_peratlons and Er_'glneerlng .
Teaching Machines the Way of the CMB Toward efficient Science Olivier Dore, 326 Operat|0na| Recom mendat|0ns for Ca ptu Il ng
The Big Climate Data Pipeline (BCDP): a data processing ~ Mission Operations  Alex Goodman, 398 History and Infusing Data Science

AutoML for Microwave Instrument Science Engineering Tanvir Islam, 386 (O RC H | D S) — J aCk L | g hth o) | d er, 39
Accelerating The Efficiency Of Galaxy Formation Science Jeff Jewell, 398

GFO Data Analytics Mission Operations ~ Lukas Mandrake, 398

Automatic Image Captioning and Annotation Capability for the Science Chris Mattmann, 170 S C i ence

A.utomati.c AI—bzilsed S(?ftware Vuhllerabili.ty & .Risk .Extr.actions Erllgil.leering . Mic.hael Pajevski, 394 Develop autom ated mu |t|_ Scale

Diagnosing Failures in Scheduling using Visualizations for Mission Operations Emine Basak Alper .

Infusion of Astronomical Source Vetting and Variable Star Science U. Rebbapragada, CH4/C02 event/anomaly deteCtlon

Speeding up InSAR Unwrapper Using Convolutional Neural ~Science Gian Franco Sacco, 398 and classification — Rlley Duren, 8X
Enhancing NASA Data Applications in High Societal Impact Science Hui Su, 329

Mission-Ready Prototype of an Advanced Bayesian Level-2 for Science David Thompson, 382

Framework for Multi-Mission Rock Detection Pipeline Mission Operations Marshall Trautman, 397

Machine Learning to Understand Cloud Processes across Science Qing Yue, 329

Upcoming events

 NASA Al and Data Science Workshop — March 24-26, 2020 at Caltech
 2nd Planetary Informatics and Data Analytics Conference — June 2020 at
ESA Astronomy Center, Madrid, Spain



Summary
Nature of Astronomy (and other sciences) changing
Data complexity and not just volume is a challenge
Data driven science has already emerged

Extreme caution required when using canned solutions

(but outlook is positive)

Pertinent questions for this meeting:
» Taking advantage of what exists

* Driving towards use cases
 [dentifying datasets that exist

e Transfer learning and data fusion



