Radioisotope Thermoelectric Generators for Deep Space Science Missions

Overview of Plutonium Fuel

RTGs for NASA – Reference RTGs

Acronym GPHS-RTG	Definition General-Purpose Heat Source RTG	Descriptions This RTG was designed to operate in vacuum only. It was flown on PNH, Cassini, and other missions. Not a modular system.	Power/GPHS 290/18	Th, °C 1000
MMRTG	Multi-Mission RTG	Operates in vacuum and atmosphere. Flown on the Curiosity rover. Not a modular system.	110/8	530

MMRTG

GPHS RTG

RTG Primer

Converts heat produced from the decay of plutonium into quiet DC power.

• The DOE has produced a variety of RTGs that have been designed and flown over the

last 5 decades by NASA.

• Only the MMRTG can be procured today.

- No moving parts
- An MMRTG weighs approximately 45 kg and produces 110W at launch.
- Operates in vacuum and planetary atmospheres.
- Thermal output is ~1880Wth, BOL.
- Estimate ~90 Welec at Europa (7 yrs. after BOL)

SNAP-19 RTG

MMRTG Core

MMRTG Cutaway

RTG Heat Distribution

Thermal Loops to Move Heat

Planetary Protection

- Self-sterilizing in large part in room temperature air
 - Only coldest edges on fins are not self-sterilizing
 - These can be easily cleaned
- Housing temperature will drop below freezing within 60 years on an icy moon or ocean world such as Europa
 - RTGs will not provide a permanent heat source for life on icy moons or other bodies