Some mechanical properties for ice |h

Christine McCarthy, Lamont-Doherty Earth Observatory
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Mechanical response depends on timescale of loading

VisCcous anelastic elastic

glacial tidal
loading deformation

tectonics seismic waves ultrasonic

10° 10° 10 10 107"

time since loading (Years)

>

10PHz 107°Hz 10> Hz 1Hz 10°Hz

frequency (Hz)



Modulus (GPa)
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TABLE 4.1

Values for the Young’s modulus Y, rigidity modulus G, Poisson’s ratio 7, and
bulk modulus K for polycrystalline ice at —5°C obtained by sonic techniques

Y G K
G Pa — (in units of (in units of (in units of
10* bar) 10* bar) - 10* bar) Reference

895 - — — Boyle and Sproule (1931)
9-17 3367 0-365 11-3+ Ewing et al.(1934)
9-80 3-68+ 0-33 9.61+ Northwood (1947)

9-18-9-38 3.45-3.52% 0-33 8-81-8-927 Jona and Scherrer (1952)
9-94 3-80 0-31 8.72+ Gold (1958) \
8-69 — - - Nakaya (1959a)

Temp-dependent moduli
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+ Calculated from eqns (4.5 and 4.6).

Hobbs (1974)

There is a modest temp-dependence for elastic
response. What else affects unrelaxed modulus?

Porosityl(poroelastic effects well-known)

Grain size (No effect on elastic properties)



Modulus with impurities?

Greatly reduced if melt (above Ty)
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Flow law

GBS-rate limited

basal slip
n=1.8
p=1.4

basal slip-rate limited
GBS
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p=0

log €

diffusional flow
(theoretical)

dislocation
creep
n=40
p=0

log o
[Goldsby and Kohlstedt, 2001]

Viscosity of ice is well known.
An empirical flow law relates
stress to strainrate:
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Where n is the stress
exponent, p is the grain
size, U is activation energy,
R is the gas constantand T
is temperature.



Static grain growth

Static grain growth depends on initial
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Fig. 9. Temperature dependence of grain growth rates of ice with bubbles and bubble-
Fig. 3. Grain growth curves of ice samples at 253 K. In the inset figure, t; indicates the (f;e;_'flg":; ’r)::)lo‘]) Egﬁ;ﬁ:}f;{:‘pﬁ::ﬁ’;gﬁazﬁ i":g ?;:RT::ET ‘T,)ltc:lt:.::ll)abtlfd
hypothetical incubation time, which is defined in Eqs. (2) and (3) in the text. from the temperature dependence of air bubble migration in ice. These results suggest

that the slow grain boundary migration of ice with bubbles is controlled by the

[AZU ma et a I . 2012] migration velocity of air bubbles in ice.



Grain/subgrain size piezometer for deforming
materials [see Jacka and Li for ice-specific
piezometer]

Twiss [1977] applied Raj&Pharr [1986] looked at

energy balance between grain/ many materials to determine
subgrain and free dislocations Kandp 4 u I
=h
P
d — K(Ej b o
b o
o is stress N
M=p/(1-v)

W is shear modulus
v is Poisson ration
d is subgrain size 32
b is burgers vector
K and p are constants

(assumes all dislocations are

edge, all boundaries are simple
tilt, and crystals are elastically 26 28 30 3z 3
isotropic)




What’'s the non-ice stuff?

Some non-ice Near-Infrared Spectra
candidates: indicates ice (blue) and

. non-ice, hydrated material
- Na;S0,nR0 (red) are on the surface
- MgSO,-nH,0

- NaCl-2H,0




How does non-ice stuff affect the
microstructure?

Do not picture a bunch of salt with specks of pepper. These are all soluble, so if it was
ever liquid and froze, it will have eutectic microstructure. Composition of first melt will

be eutectic, regardless of initial bulk comp.
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All candidate salts/acids form “simple binaries” with ice



Scale depends on AT during
solidiﬁcation

Two phases grow side-by-side into the liquid
with velocity,V
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How does non-ice stuff affect the
viscosity? .
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Stress (MPa)

In McCarthy et al, 2011, | found that ice+magnesium sulfate
had higher viscosity (at low stress) but weaker (lower
fracture toughness?) at high stress.
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