

Optical Communication Flight Systems

Bryan S. Robinson 11 July 2016

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This material is based upon work supported by the National Aeronautics and Space Administration under Air Force Contract No. FA8721-05-C-0002. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

© 2016 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

2001

Optical Comm Demonstrations and Systems

2012

OSIRIS (DLR) 2016

2015+

EDRS/Sentinal (ESA) 2015

LCRD (NASA) 2019

DSOC (NASA) 2021

Outline

- Near-Earth lasercom systems
 - Charts provided by Frank Heine, TESAT
- Deep space lasercom systems

ESA

to third parties

The TESAT Laser Communication Terminal LCT

High Data Rate full-duplex

- 1.8 Gbit/s user data rate
- 2.8 Gbit/s optical data rate
- Homodyne BPSK

1064nm

=> Single frequency laser (NPRO Byer /Kane)

Beacon-Less spatial acquisition

- Single unit, SWaP
 - 60*60*60 cm
 - 50kg
 - 160W max 120 W av.

PROPRIETARY INFORMATION: © Tesat-Spacecom GmbH & Co. KG reserves all rights including industrial property rights, and all rights of disposal such as copying and passing to third parties

LCT types

GEO and LEO (photo April 2016)

PROPRIETARY INFORMATION: © Tesat-Spacecom GmbH & Co. KG reserves all rights including industrial property rights, and all rights of disposal such as copying and passing to third parties

Coherent Detection and BPSK

 Received light is mixed with a phase locked single frequency source on a photo diode, transfer of data from 300THz carrier to baseband

$$i_{H} = D \left\{ \frac{1}{2} A_{c}^{2} + \frac{1}{2} A_{o}^{2} + A_{c} A_{o} \cos (\varphi_{o} - \varphi_{c}) \right\}$$

- Photocurrent has DC and AC part, AC part is the information
- Basically the RX light amplitude is multiplied by the strong local oscillator
- Phase locking builds an interferometer over link distance (> 45000 km)
- Receiver is shot noise limited (mW of local oscillator optical power on photo diode)
- Broad band background (Sun) is suppressed, penalty is less than 0.5d dB if Sun is in field of view
- Can detect single photons
- Most efficient system without bandwidth expansion (coding)

PROPRIET RPM A outperforms coherent detection with codings, and all rights of disposal such as copying and passing to third parties

Questions?

Frank Heine Head of LCT System Engineering Frank.Heine@tesat.de

PROPRIETARY INFORMATION: © Tesat-Spacecom GmbH & Co. KG reserves all rights including industrial property rights, and all rights of disposal such as copying and passing to third parties

Outline

- Near-Earth lasercom systems
 - Charts provided by Frank Heine, TESAT

Deep space lasercom systems

Optical Comm for Deep Space

Deep Space Communications Links

DataRate[bits / sec] =
$$\frac{1}{\eta} \frac{P_R}{hv}$$

P_{T/R} = Transmitted/Received Power

 $L_{T/R}$ = Transmitter/Receiver Loss

A_{T/R} = Transmitter/Receiver Aperture Area

R = Range

 λ = Carrier Wavelength

v = Carrier Frequency

Lunar Laser Communication Demonstration

LLCD Space Terminal on LADEE

Modular design allowed for balanced placement in small spacecraft

LLCD Optical Module

0.5-W transmitter
4-inch telescope
Fully-gimballed
Inertial
stabilization

LLCD Controller Module

LLCD Modem Module

Space Terminal mass ~ 30 kg Space Terminal power ~ 90 W

BSR 7/11/16 KISS SC - 13

Transmit Aperture Gain

Beam Size From Moon

- 10-cm transmit aperture
- 15-µrad beam
 - ~0.001 deg
 - ~6 km on Earth

Beam Stabilization

High BW tracking with beacon

LLCD Approach

Tracking for Deep Space Optical Comm Lincoln Laboratory

Beam Stabilization

LLCD Approach

LLCD Space Pointing Systems

- 2-axis gimbal
 - Provides coarse pointing
 - 55 deg az, +/- 10 deg el
- Magnetohydrodynamic Inertial Reference Unit (MIRU)
 - 2-axis angle rate sensors and voice-coil actuators
 - Rejects high-frequency (> ~few Hz) disturbances
- Piezo-electric actuators
 - Transmit fiber point-ahead mechanism
 - Receive fiber nutator for tracking uplink comm signal
- Quadrant detector
 - Detects uplink beacon
 - Coarse tracking during acquisition

Deep Space Communications Links

Transmitter

P_{T/R} = Transmitted/Received Power

 $L_{T/R}$ = Transmitter/Receiver Loss

A_{T/R} = Transmitter/Receiver Aperture Area

R = Range

 λ = Carrier Wavelength

v = Carrier Frequency

Receiver Efficiency (photons / bit)

Shannon Capacity for AWGN Channel Lincoln Laboratory

The channel capacity, C, for a AWGN channel with bandwidth, W, received power, P_R , and noise variance $N_0/2$ is:

$$C = W \log_2 \left(1 + \frac{P_R}{N_0 W}\right) \text{[bits/s]}$$

For reliable data transfer, the data rate, R, over a channel must be less than C

Claude Shannon

$$R < W \log_{2} \left(1 + \frac{E_{b}R}{N_{0}W}\right)$$

$$\Rightarrow \frac{E_{b}}{N_{0}} > \frac{2^{\frac{R}{W}} - 1}{R}$$
Bandwidth Efficiency = Data Rate / Channel Bandwidth

Shannon Capacity for AWGN Channel

Shannon Capacity for AWGN Channel

Optical Comm Efficiency

Pulse Position Modulation (PPM)

- In the absence of background, single photon detection provides log₂M bits of information
- For single-photon detector, pulse detection probability is

$$1 - \exp\left(-\frac{P_R M}{hvW}\right)$$

PPM Channel Capacity

Background-free photon-counting PPM channel capacity is

$$C = \left[\frac{W}{M}\right] \left[1 - \exp\left(-\frac{P_R M}{h v W}\right)\right] \log_2 M \quad \text{[bits / second]}$$

• Constraint for photon efficiency
$$\left(\eta \equiv \frac{P_R}{hvR} \right)$$
 as a function of bandwidth expansion $\left(\beta \equiv \frac{W}{R} \right)$ is

$$\eta > -\frac{\beta}{M} \ln \left(1 - \frac{M}{\beta \log_2 M} \right)$$

Optical Comm Efficiency

Downlink Optical Transmitter

LLCD Space terminal modem functions

- 40-620 Mbps downlink
 - ½-rate FEC encode
 - 16PPM modulator
 - 0.5-W Erbium-doped fiber amplifier
- 10-20 Mbps uplink receiver

LLCD Modem

Lunar Lasercom Ground Terminal

Novel Transportable Design

- Single gimbal
- Four 16-inch receive telescopes
- Four 6-inch transmit telescopes
- All fiber-coupled
- Air-conditioned globe for optics
- Clamshell dome for weather protection

- Shipping container houses modem, computers, office
- Developed at MITLL, transported to White Sands NASA site for operations

LLCD Photon Counting Detectors

NbN Superconducting Nanowire Arrays

NbN nanowire on SiO₂ patterned in "meander" shape

Interleaving multiple detectors results in shorter equivalent reset time

High detection efficiency >70%
Fast reset time < 10 ns
Low timing jitter < 40 ps
Extremely low noise

Receiver achieves ~ 2 bits per detected photon

PM multi-mode fiber

Measured Performance of LLCD Primary Receiver

Summary

- Operational near-Earth optical communications systems are being deployed today
 - European Data Relay System
- Optical comm for can enable high data volume delivery from deep space
 - Because of the large transmission distances, alternatives to optical tracking for beam stabilization must be employed
 - Passive isolation
 - Inertial references
 - Celestial sources
 - In some cases, photon-counting optical comm can outperform traditional coherent receiver performance
 - Coherent receivers are typically useful for high-rate / near-Earth links
 - Photon-counting receivers can be useful for medium- to low-rate / deep space links